Journal of Graphics ›› 2025, Vol. 46 ›› Issue (4): 874-882.DOI: 10.11996/JG.j.2095-302X.2025040874
• Digital Design and Manufacture • Previous Articles Next Articles
ZHANG Jingjing1(
), GU Zhengzhao1, WANG Junqing1, LIU Jia2(
)
Received:2024-10-25
Accepted:2025-02-13
Online:2025-08-30
Published:2025-08-11
Contact:
LIU Jia
About author:First author contact:ZHANG Jingjing (1988-), lecturer, Ph.D. Her main research interests cover finishing and digitalization of manufacturing processes. E-mail:398956271@qq.com
Supported by:CLC Number:
ZHANG Jingjing, GU Zhengzhao, WANG Junqing, LIU Jia. Study on flexible adaptive trajectory planning for blade robot abrasive cloth wheel polishing[J]. Journal of Graphics, 2025, 46(4): 874-882.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025040874
| 参数 | 弹性模量/GPa | 泊松比 |
|---|---|---|
| 百叶轮 | 0.03 | 0.04 |
| 叶片 | 220.00 | 0.30 |
Table 1 Simulation parameters of abrasive cloth wheel and blade materials
| 参数 | 弹性模量/GPa | 泊松比 |
|---|---|---|
| 百叶轮 | 0.03 | 0.04 |
| 叶片 | 220.00 | 0.30 |
| 参数 | 数值 |
|---|---|
| 叶片进给速度vf | 0.2 mm/min |
| 快速进给速度vk | 1.0 mm/min |
| 百叶轮主轴转速vs | 33.4 m/s |
| 法向接触力Fn | 30 N (叶盆/叶背) 10 N (前缘/后缘) |
| 弦高误差εʹ | 0.08 mm |
| 残留高度 | 0.01 mm |
| Preston系数kp | 1 |
Table 2 Polishing process parameters
| 参数 | 数值 |
|---|---|
| 叶片进给速度vf | 0.2 mm/min |
| 快速进给速度vk | 1.0 mm/min |
| 百叶轮主轴转速vs | 33.4 m/s |
| 法向接触力Fn | 30 N (叶盆/叶背) 10 N (前缘/后缘) |
| 弦高误差εʹ | 0.08 mm |
| 残留高度 | 0.01 mm |
| Preston系数kp | 1 |
| 参数 | 改进前 | 改进后 |
|---|---|---|
| 步长 | 9.254 | 13.087 |
| 行距 | 20 | 15 |
Table 3 Comparison of step size/line spacing before and after improvement/mm
| 参数 | 改进前 | 改进后 |
|---|---|---|
| 步长 | 9.254 | 13.087 |
| 行距 | 20 | 15 |
Fig. 6 Comparison of blade back trajectory planning algorithms ((a) NURBS curve trajectory simulation; (b) Flexible adaptive NURBS curve trajectory simulation)
Fig. 7 Comparison polishing time and track point before/after improvement (a) Improved comparison of polishing time before and after polishing; (b) Improving the number of track points before and after polishing)
Fig. 10 Robotic belt grinding for contour errors inverse compensation trajectory method ((a) Grinding integral discs; (b) Leaf back three-dimensional surface morphology) [22]
Fig. 11 Comparison blades polishing before and after (a) Convex before polishing; (b) Convex after polishing; (c) Concave before polishing; (d) Concave after polishing; (e) After leading edge polishing; (f) After trailing edge polishing
| [1] | 马鸿宇, 申立勇, 姜鑫, 等. 数控加工中路径规划与速度插补综述[J]. 图学学报, 2022, 43(6): 967-986. |
| MA H Y, SHEN L Y, JIANG X, et al. A survey of path planning and feedrate interpolation in computer numerical control[J]. Journal of Graphics, 2022, 43(6): 967-986 (in Chinese). | |
| [2] | 李飞, 陈树林, 崔庞博, 等. 整体叶盘机器人砂带磨削轨迹优化及其实验[J]. 金刚石与磨料磨具工程, 2022, 42(1): 23-29. |
| LI F, CHEN S L, CUI P B, et al. Trajectory optimization and experiment of robotic belt grinding blisk[J]. Diamond & Abrasives Engineering, 2022, 42(1): 23-29 (in Chinese). | |
| [3] |
赵欢, 姜宗民, 丁汉. 航空发动机叶片叶缘随形磨抛刀路规划[J]. 航空学报, 2021, 42(10): 524318.
DOI |
|
ZHAO H, JIANG Z M, DING H. Tool path planning for profiling grinding of aero engine blade edgel[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524318 (in Chinese).
DOI |
|
| [4] | HUA Y, WANG X W, WANG Y, et al. A novel trajectory planning method for mobile robotic grinding wind turbine blade[J]. Journal of Manufacturing Processes, 2024, 132: 142-158. |
| [5] | MA K W, HAN L, SUN X X, et al. A path planning method of robotic belt grinding for workpieces with complex surfaces[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 728-738. |
| [6] | JI S J, LEI L G, ZHAO J, et al. An adaptive real-time NURBS curve interpolation for 4-axis polishing machine tool[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102025. |
| [7] | HUANG Z, SONG R, WAN C B, et al. Trajectory planning of abrasive belt grinding for aero-engine blade profile[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1): 605-614. |
| [8] |
贾明超, 冯斌, 吴鹏, 等. 一种融合改进A*算法与改进动态窗口法的文旅服务机器人路径规划[J]. 图学学报, 2024, 45(3): 505-515.
DOI |
|
JIA M C, FENG B, WU P, et al. A path planning for cultural tourism service robot combining improved A* algorithm and improved dynamic window approach[J]. Journal of Graphics, 2024, 45(3): 505-515 (in Chinese).
DOI |
|
| [9] | HE S S, DENG Y C, YAN C Y, et al. A tolerance constrained robot path circular interpolation method for industrial SCARA robots[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 235(6/7): 1061-1073. |
| [10] | LIN X J, XIN X P, SHAN X F, et al. Optimal parameter ranges of material removal depth of abrasive cloth wheel polishing based on sensitivity analysis[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(12): 5165-5179. |
| [11] | MA K W, XU F Y, XU Q Y, et al. Trajectory error compensation method for grinding robots based on kinematic calibration and joint variable prediction[J]. Robotics and Computer-Integrated Manufacturing, 2025, 92: 102889. |
| [12] | LV Y J, PENG Z, QU C, et al. An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66: 101987. |
| [13] | JI W, WANG L H. Industrial robotic machining: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1): 1239-1255. |
| [14] | HOU Z W, ZHOU Z T, LIU P, et al. Robotic trajectories and morphology manipulation of single particle and granular materials by a vibration tweezer[J]. Soft Robotics, 2021, 8(1): 1-9. |
| [15] | YANG Z Y, CHU Y, XU X H, et al. Prediction and analysis of material removal characteristics for robotic belt grinding based on single spherical abrasive grain model[J]. International Journal of Mechanical Sciences, 2021, 190: 106005. |
| [16] | WANG Q H, LIANG Y J, XU C Y, et al. Generation of material removal map for freeform surface polishing with tilted polishing disk[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9): 4213-4226. |
| [17] | DING W F, ZHAO B, ZHANG Q L, et al. Fabrication and wear characteristics of open-porous cBN abrasive wheels in grinding of Ti-6Al-4V alloys[J]. Wear, 2021, 477: 203786. |
| [18] | 郭磊, 王家庆, 明子航, 等. 基于弹性基体磨具的3D打印高温合金叶片磨抛试验[J]. 表面技术, 2023, 52(2): 43-54. |
| GUO L, WANG J Q, MING Z H, et al. Grinding and polishing test of 3D-printed superalloy blade based on elastic-matrix abrasive tool[J]. Surface Technology, 2023, 52(2): 43-54 (in Chinese). | |
| [19] | 张军锋, 史耀耀, 蔺小军, 等. 基于修正Preston方程的百页轮抛光材料去除深度建模[J]. 中国机械工程, 2022, 33(22): 2711-2716. |
|
ZHANG J F, SHI Y Y, LIN X J, et al. Modeling of material removal depth in ABFW polishing based on modified preston equation[J]. China Mechanical Engineering, 2022, 33(22): 2711-2716 (in Chinese).
DOI |
|
| [20] | 波波夫瓦伦丁 L. 接触力学与摩擦学的原理及其应用[M]. 李强, 雒建斌, 译. 2版. 北京: 清华大学出版社, 2019: 48-55. |
| POPOV V L. Contact mechanics and friction physical principles and applications[M]. LI Q, LUO J B, Translate. 2nd ed. Beijing: Tsinghua University Press, 2019: 48-55 (in Chinese). | |
| [21] | 肖飞. 基于力控机器人的航空发动机叶片精密砂带磨削工艺研究[D]. 南昌: 南昌大学, 2022. |
| XIAO F. Research on precision abrasive belt grinding process of aeroengine blade based on force control robot[D]. Nanchang: Nanchang University, 2022 (in Chinese). | |
| [22] | 陈树林. 整体叶盘高表面完整性机器人砂带磨削轨迹规划及实验研究[D]. 重庆: 重庆大学, 2023. |
| CHEN S L. Research on trajectory planning and experiments of robotic belt grinding for blisk with high surface integrity[D]. Chongqing: Chongqing University, 2023 (in Chinese). |
| [1] |
LIU Jia, ZHANG Jing-jing, YANG Sheng-qiang, QIAO Zhi-jie.
Research on microstructure region identification and path splicing method of abrasive cloth wheel polishing blade
[J]. Journal of Graphics, 2022, 43(4): 715-720.
|
| [2] | Yin Leping, Zhang Yue, Zhu Chungang. Degenerations of Quadratic NURBS Curves [J]. Journal of Graphics, 2015, 36(2): 186-192. |
| [3] | Shi Mao. The Convergence Analysis for NURBS Curve [J]. Journal of Graphics, 2013, 34(4): 73-75. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||