Journal of Graphics ›› 2025, Vol. 46 ›› Issue (5): 919-930.DOI: 10.11996/JG.j.2095-302X.2025050919
• Review • Previous Articles Next Articles
HUANG Kaiqi1,2,3(), WU Meiqi1,2, CHEN Honghao1, FENG Xiaokun1,3, ZHANG Dailing1
Received:
2025-07-07
Accepted:
2025-08-20
Online:
2025-10-30
Published:
2025-09-10
About author:
First author contact:HUANG Kaiqi (1977-), professor, Ph.D. His main research interests cover computer vision and cognitive decision-making. E-mail:kaiqi.huang@nlpr.ia.ac.cn
Supported by:
CLC Number:
HUANG Kaiqi, WU Meiqi, CHEN Honghao, FENG Xiaokun, ZHANG Dailing. The three realms of visual turing: from seeing to imagining in the LLM era[J]. Journal of Graphics, 2025, 46(5): 919-930.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025050919
[1] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 3992-4003. |
[2] | OpenAI. GPT-4 technical report[EB/OL]. [2025-05-07]. https://doi.org/10.48550/arXiv.2303.08774. |
[3] | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. [2025-05-07]. https://proceedings.mlr.press/v139/radford21a. |
[4] | 黄凯奇, 赵鑫, 李乔哲, 等. 视觉图灵: 从人机对抗看计算机视觉下一步发展[J]. 图学学报, 2021, 42(3): 339-348. |
HUANG K Q, ZHAO X, LI Q Z, et al. Visual Turing: the next development of computer vision in the view of human-computer gaming[J]. Journal of Graphics, 2021, 42(3): 339-348 (in Chinese). | |
[5] | 黄凯奇, 兴军亮, 张俊格, 等. 人机对抗智能技术[J]. 中国科学: 信息科学, 2020, 50(4): 540-550. |
HUANG K Q, XING J L, ZHANG J G, et al. Intelligent technologies of human-computer gaming[J]. Scientia Sinica Informationis, 2020, 50(4): 540-550 (in Chinese). | |
[6] | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 248-255. |
[7] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// The 13th European Conference on Computer Vision-ECCV 2014. Cham: Springer, 2014: 740-755. |
[8] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[9] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 3431-3440. |
[10] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[11] | VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 3156-3164. |
[12] |
GEMAN D, GEMAN S, HALLONQUIST N, et al. Visual Turing test for computer vision systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3618-3623.
DOI PMID |
[13] | ANTOL S, AGRAWAL A, LU J S, et al. VQA: visual question answering[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 2425-2433. |
[14] | JOHNSON J, HARIHARAN B, VAN DER MAATEN L, et al. Inferring and executing programs for visual reasoning[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 3008-3017. |
[15] | HUDSON D A, MANNING C D. GQA: a new dataset for real-world visual reasoning and compositional question answering[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6693-6702. |
[16] | PEI G X, LI H Y, LU Y D, et al. Affective computing: recent advances, challenges, and future trends[J]. Intelligent Computing, 2024, 3: 0076. |
[17] |
LILIENFELD S O, WOOD J M, GARB H N. The scientific status of projective techniques[J]. Psychological Science in the Public Interest, 2000, 1(2): 27-66.
DOI PMID |
[18] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[19] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2025-05-07]. https://arxiv.org/abs/1409.1556. |
[20] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[21] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2010.11929. |
[22] | HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9726-9735. |
[23] | ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2203.03605. |
[24] | JIANG P Y, ERGU D, LIU F Y, et al. A review of Yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. |
[25] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007. |
[26] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. |
[27] | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2010.04159. |
[28] | LIN Y T, YUAN Y H, ZHANG Z, et al. DETR does not need multi-scale or locality design[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 6522-6531. |
[29] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
[30] | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]// The 35th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2021: 12077-12090. |
[31] | CHENG B W, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 1280-1289. |
[32] | WANG X L, ZHANG R F, KONG T, et al. SOLOv2: dynamic and fast instance segmentation[C]// The 34th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2020: 17721-17732. |
[33] | TIAN Z, SHEN C H, CHEN H. Conditional convolutions for instance segmentation[C]// The 16th European Conference on Computer Vision-ECCV 2020. Cham: Springer, 2020: 282-298. |
[34] | KIRILLOV A, GIRSHICK R, HE K M, et al. Panoptic feature pyramid networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6392-6401. |
[35] | XIONG Y W, LIAO R J, ZHAO H S, et al. UPSNet: a unified panoptic segmentation network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 8810-8818. |
[36] | XIAO T T, LIU Y C, ZHOU B L, et al. Unified perceptual parsing for scene understanding[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 432-448. |
[37] | RAVI N, GABEUR V, Hu Y T, et al. SAM 2:segment anything in images and videos[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2408.00714. |
[38] | RUSSAKOVSKY, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
[39] | ZHOU B L, ZHAO H, PUIG X, et al. Scene parsing through ADE20K dataset[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5122-5130. |
[40] | GUPTA A, DOLLÁR P, GIRSHICK R. LVIS: a dataset for large vocabulary instance segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5351-5359. |
[41] | LI C Y, LIU H T, LI L H, et al. ELEVATER: a benchmark and toolkit for evaluating language-augmented visual models[C]// The 36th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2022: 9287-9301. |
[42] | BORJI A. ObjectNet dataset: reanalysis and correction[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2004.02042. |
[43] | HENDRYCKS D, BASART S, MU N, et al. The many faces of robustness: a critical analysis of out-of-distribution generalization[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 8320-8329. |
[44] | XU K, BA J L, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]// The 32nd International Conference on International Conference on Machine Learning. Lile: International Machine Learning Society (IMLS), 2015: 2048-2057. |
[45] | LI X J, YIN X, LI C Y, et al. OSCAR: object-semantics aligned pre-training for vision-language tasks[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 121-137. |
[46] | ZHANG P C, LI X J, HU X W, et al. VinVL: revisiting visual representations in vision-language models[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 5575-5584. |
[47] | LI J N, LI D X, XIONG C M, et al. BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation[C]// The 39th International Conference on Machine Learning. Baltimore: Proceeding of Machine Learning Research, 2022: 12888-12900. |
[48] | LI J N, LI D X, SAVARESE S, et al. BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models[C]// The 40th International Conference on Machine Learning. Hawaii: International Machine Learning Society (IMLS), 2023: 19730-19742. |
[49] | SUHR A, LEWIS M, YEH J, et al. A corpus of natural language for visual reasoning[C]// The 55th Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers). Vancouver: Association for Computational Linguistics, 2017: 217-223. |
[50] | YI K X, GAN C, LI Y Z, et al. CLEVRER: collision events for video representation and reasoning[EB/OL]. [2025-05-07]. https://arxiv.org/abs/1910.01442. |
[51] | JOHNSON, HARIHARAN, VAN DER MAATEN, et al. Dataset: CLEVR-CoGenT[EB/OL]. [2025-05-07]. https://doi.org/10.57702/v42pwykk. |
[52] | PEREZ E, STRUB F, DE VRIES H, et al. FiLM: visual reasoning with a general conditioning layer[C]// The 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3942-3951. |
[53] | HUDSON D A, MANNING C D. Compositional attention networks for machine reasoning[EB/OL]. [2025-05-07]. https://arxiv.org/abs/1803.03067. |
[54] | YU Z, CUI Y H, YU J, et al. Deep multimodal neural architecture search[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3743-3752. |
[55] | CHEN Y C, LI L J, YU L C, et al. UNITER: universal image-text representation learning[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 104-120. |
[56] | SU W J, ZHU X Z, CAO Y, et al. VL-BERT: pre-training of generic visual-linguistic representations[EB/OL]. [2025-05-07]. https://arxiv.org/abs/1908.08530. |
[57] | Gemini Team Google. Gemini: a family of highly capable multimodal models[EB/OL]. [2025-05-07]. https://doi.org/10.48550/arXiv.2312.11805. |
[58] | BAI J Z, BAI S, CHU Y F, et al. Qwen technical report[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2309.16609. |
[59] | Claude\Anthropic[EB/OL]. [2025-05-07]. https://www.anthropic.com/ |
[60] | ANDREAS J, ROHRBACH M, DARRELL T, et al. Neural module networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 39-48. |
[61] | GRUNDE-MCLAUGHLIN M, KRISHNA R, AGRAWALA M. AGQA: a benchmark for compositional spatio-temporal reasoning[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11282-11292. |
[62] | GOYAL Y, KHOT T, SUMMERS-STAY D, et al. Making the V in VQA matter: elevating the role of image understanding in visual question answering[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6325-6334. |
[63] | ZHU Y K, GROTH O, BERNSTEIN M, et al. Visual7W: grounded question answering in images[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 4995-5004. |
[64] | KAFLE K, KANAN C. An analysis of visual question answering algorithms[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 1983-1991. |
[65] | MARINO K, RASTEGARI M, FARHADI A, et al. OK-VQA: a visual question answering benchmark requiring external knowledge[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 3190-3199. |
[66] | ZHANG Y Q, YANG X C, XU X L, et al. Affective computing in the era of large language models: a survey from the NLP perspective[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2408.04638. |
[67] | TAO J, TAN T. Affective computing: a review[C]// The 1st International Conference on Affective Computing and Intelligent Interaction. Cham: Springer, 2005: 981-995. |
[68] |
SHANKMAN S A, KLEIN D N. The relation between depression and anxiety: an evaluation of the tripartite, approach-withdrawal and valence-arousal models[J]. Clinical Psychology Review, 2003, 23(4): 605-637.
PMID |
[69] | EKMAN P. An argument for basic emotions[J]. Cognition & Emotion, 1992, 6(3/4): 169-200. |
[70] | PORIA S, CAMBRIA E, BAJPAI R, et al. A review of affective computing: from unimodal analysis to multimodal fusion[J]. Information Fusion, 2017, 37: 98-125. |
[71] | AMIN M M, CAMBRIA E, SCHULLER B W. Will affective computing emerge from foundation models and general artificial intelligence? A first evaluation of ChatGPT[J]. IEEE Intelligent Systems, 2023, 38(2): 15-23. |
[72] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019: 4171-4186. |
[73] | LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2025-05-07]. https://arxiv.org/abs/1907.11692. |
[74] | MAO R, LIU Q, HE K, et al. The biases of pre-trained language models: an empirical study on prompt-based sentiment analysis and emotion detection[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 1743-1753. |
[75] | TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2302.13971. |
[76] | CHUNG H W, HOU L, LONGPRE S, et al. Scaling instruction-finetuned language models[J]. Journal of Machine Learning Research, 2024, 25(1): 3381-3433. |
[77] | ZHOU Y C, MURESANU A I, HAN Z W, et al. Large language models are human-level prompt engineers[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2211.01910. |
[78] | WHITE J, FU Q C, HAYS S, et al. A prompt pattern catalog to enhance prompt engineering with ChatGPT[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2302.11382. |
[79] | DEVALAL S, KARTHIKEYAN A. LoRa technology-an overview[C]// The 2018 Second International Conference on Electronics, Communication and Aerospace Technology. New York: IEEE Press, 2018: 284-290. |
[80] | LIU X, JI K X, FU Y C, et al. P-Tuning v2:prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2110.07602. |
[81] | LI X L, LIANG P. Prefix-tuning: optimizing continuous prompts for generation[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2101.00190. |
[82] | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// The 34th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2020: 1877-1901. |
[83] | WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of- thought prompting elicits reasoning in large language models[C]// The 36th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2022: 24824-24837. |
[84] | PARK J S, O’BRIEN J, CAI C J, et al. Generative agents: interactive simulacra of human behavior[C]// The 36th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2023: 2. |
[85] | DONG Q X, LI L, DAI D M, et al. A survey on in-context learning[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2301.00234. |
[86] | FENG X K, HU S Y, CHEN X T, et al. A hierarchical theme recognition model for sandplay therapy[C]// The 6th Chinese Conference on Pattern Recognition and Computer Vision. Cham: Springer, 2024: 241-252. |
[87] | 黄凯奇, 康雅萱, 晏成信, 等. 基于交互环境的智能化心理测评(综述)[J]. 中国心理卫生杂志, 2025, 39(4): 337-345. |
HUANG K Q, KANG Y X, YAN C X, et al. A review of intelligent psychological assessment based on interactive environment[J]. Chinese Mental Health Journal, 2025, 39(4): 337-345 (in Chinese). | |
[88] | GAMBLE K R. The Holtzman inkblot technique[J]. Psychological Bulletin, 1972, 77(3): 172-194. |
[89] | WU M Q, KANG Y X, LI X C, et al. VS-LLM: visual- semantic depression assessment based on LLM for drawing projection test[C]// The 7th Chinese Conference on Pattern Recognition and Computer Vision. Cham: Springer, 2025: 232-246. |
[90] | LIAN Z, SUN L C, REN Y, et al. MERBench: a unified evaluation benchmark for multimodal emotion recognition[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2401.03429. |
[91] | DENG Y, ZHANG W X, PAN S J, et al. SOUL: towards sentiment and opinion understanding of language[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2310.17924. |
[92] | LIU R, ZUO H L, LIAN Z, et al. Emotion and intent joint understanding in multimodal conversation: a benchmarking dataset[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2407.02751. |
[93] | WANG H R, WANG R, MI F, et al. Cue-CoT: chain-of-thought prompting for responding to in-depth dialogue questions with LLMs[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2305.11792. |
[94] | ZHAO W X, LI Z J, WANG S L, et al. Both matter: enhancing the emotional intelligence of large language models without compromising the general intelligence[EB/OL]. [2025-05-07]. https://arxiv.org/abs/2402.10073. |
[1] | YUE Zijia, WANG Wensong, CHEN Shuangmin, XIN Shiqing, TU Changhe. Geodesic distance propagation across open boundaries [J]. Journal of Graphics, 2025, 46(5): 1042-1049. |
[2] | HUANG Jing, SHI Ruihao, SONG Wenming, GUO Hepan, WEI Huang, WEI Xiaosong, YAO Jian. A review of autonomous driving image synthesis methods: from simulators to new paradigms [J]. Journal of Graphics, 2025, 46(5): 931-949. |
[3] | ZHAI Yongjie, ZHAI Bangchao, HU Zhedong, YANG Ke, WANG Qianming, ZHAO Xiaoyu. Adaptive feature fusion pyramid and attention mechanism-based method for transmission line insulator defect detection [J]. Journal of Graphics, 2025, 46(5): 950-959. |
[4] | LENG Shuo, WANG Wei, OU Jiayong, XUE Zhigang, SONG Yinglong, MO Sijun. On-Site construction safety monitoring based on large vision language models [J]. Journal of Graphics, 2025, 46(5): 960-968. |
[5] | YE Wenlong, CHEN Bin. PanoLoRA: an efficient finetuning method for panoramic image generation based on Stable Diffusion [J]. Journal of Graphics, 2025, 46(5): 980-989. |
[6] | ZHU Hongmiao, ZHONG Guojie, ZHANG Yanci. Semantic segmentation of small-scale point clouds based on integration of mean shift and deep learning [J]. Journal of Graphics, 2025, 46(5): 998-1009. |
[7] | GUO Ruidong, LAN Guiwen, FAN Donglin, ZHONG Zhan, XU Zirui, REN Xinyue. An object detection algorithm for powerline inspection based on the feature focus & diffusion network [J]. Journal of Graphics, 2025, 46(4): 719-726. |
[8] | LEI Songlin, ZHAO Zhengpeng, YANG Qiuxia, PU Yuanyuan, GU Jinjing, XU Dan. Zero-shot style transfer based on decoupled diffusion models [J]. Journal of Graphics, 2025, 46(4): 727-738. |
[9] | CHEN Dong, LI Changlong, DU Zhenlong, SONG Shuang, LI Xiaoli. Intelligent depiction to illumination and shadow: robust video shadow extraction based on SAM [J]. Journal of Graphics, 2025, 46(4): 739-745. |
[10] | YAN Zhuoyue, LIU Li, FU Xiaodong, LIU Lijun, PENG Wei. Hierarchical attention spatial-temporal feature fusion algorithm for 3D human pose and shape estimation [J]. Journal of Graphics, 2025, 46(4): 746-755. |
[11] | WANG Ziyu, CAO Weiwei, CAO Yuzhu, LIU Meng, CHEN Jun, LIU Zhaobang, ZHENG Jian. Semi-supervised pulmonary airway segmentation based on dynamically decoupling intra-class regions [J]. Journal of Graphics, 2025, 46(4): 763-774. |
[12] | GUO Mingce, HUANG Bei, CHENG Lechao, WANG Zhangye. Acceleration method for neural implicit surface reconstruction with joint point cloud priors [J]. Journal of Graphics, 2025, 46(4): 807-817. |
[13] | LIAO Guoqiong, HUANG Longjie, LI Qingxin, GU Yong, LI Haibo. Adaptive two-hand reconstruction network for monocular visible light environments [J]. Journal of Graphics, 2025, 46(4): 837-846. |
[14] | LIN Zhiyuan, WANG Yewei, YU Guangzheng, LI Zhelin, ZHANG Xin. Research on the method of repairing optical scanning incomplete model based on three-dimensional auricle template [J]. Journal of Graphics, 2025, 46(4): 889-898. |
[15] | DONG Jiale, DENG Zhengjie, LI Xiyan, WANG Shiyun. Deepfake detection method based on multi-feature fusion of frequency domain and spatial domain [J]. Journal of Graphics, 2025, 46(1): 104-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||