Journal of Graphics ›› 2025, Vol. 46 ›› Issue (6): 1153-1160.DOI: 10.11996/JG.j.2095-302X.2025061153
• Core Industrial Software for Manufacturing Products • Previous Articles Next Articles
ZHOU Tianqi1(
), DING Jun1,2(
), YAO Yu2
Received:2025-08-30
Accepted:2025-11-05
Online:2025-12-30
Published:2025-12-27
Contact:
DING Jun
About author:First author contact:ZHOU Tianqi (1999-), master student. His main research interests cover design and manufacturing of ships and ocean structures. E-mail:836282696@qq.com
Supported by:CLC Number:
ZHOU Tianqi, DING Jun, YAO Yu. Development of reduced integration micropolar hexahedron finite element and application verification[J]. Journal of Graphics, 2025, 46(6): 1153-1160.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025061153
| Element | Numerical | |||
|---|---|---|---|---|
| σ11 | σ12 | ε11 | ε12 | |
| Hex8L[ | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
| Hex8R | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
| Hex8EFP[ | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
| Hex8IM[ | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
Table 1 Results for the first displacement patch test
| Element | Numerical | |||
|---|---|---|---|---|
| σ11 | σ12 | ε11 | ε12 | |
| Hex8L[ | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
| Hex8R | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
| Hex8EFP[ | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
| Hex8IM[ | 5.0 | 1.5 | 10−3 | 0.75×10−3 |
| Element | Numerical | |||||
|---|---|---|---|---|---|---|
| σ11 | σ13 | σ31 | ε11 | ε13 | ε31 | |
| Hex8L[ | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
| Hex8R | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
| Hex8EFP[ | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
| Hex8IM[ | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
Table 2 Results for the second displacement patch test
| Element | Numerical | |||||
|---|---|---|---|---|---|---|
| σ11 | σ13 | σ31 | ε11 | ε13 | ε31 | |
| Hex8L[ | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
| Hex8R | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
| Hex8EFP[ | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
| Hex8IM[ | 5.0 | 1.0 | 2.0 | 10−3 | 0.25×10−3 | 1.25×10−3 |
| Element | σ11 | σ13 | m11 | m12 |
|---|---|---|---|---|
| 解析解 | 5.000 | 1.483 | 0.020 0 | −0.040 0 |
| Hex8R | 5.000 | 1.483 | 0.020 0 | −0.040 0 |
| Hex8EFP[ | 4.965 | 1.483 | 0.019 9 | −0.040 2 |
Table 3 Results for the third displacement patch test
| Element | σ11 | σ13 | m11 | m12 |
|---|---|---|---|---|
| 解析解 | 5.000 | 1.483 | 0.020 0 | −0.040 0 |
| Hex8R | 5.000 | 1.483 | 0.020 0 | −0.040 0 |
| Hex8EFP[ | 4.965 | 1.483 | 0.019 9 | −0.040 2 |
| Element | lb | u2 | ϕ3 | σ11 | |||
|---|---|---|---|---|---|---|---|
| A | N | A | N | A | N | ||
| Hex8L[ | 0 | 0.941 | 0.069 | 0.188 | 0.012 6 | 23.660 0 | 1.968 |
| Hex8IM[ | 0.941 | 0.187 5 | 23.660 | ||||
| Hex8R | 0.937 | 0.186 8 | 14.947 | ||||
| Hex8EFP[ | 0.912 | 0.181 8 | 23.993 | ||||
| C3D8R[ | 0.937 | 0.186 5 | 14.947 | ||||
| Hex8L[ | 0.05 | 0.900 | 0.069 | 0.179 | 0.012 7 | 22.641 0 | 1.950 |
| Hex8IM[ | 0.900 | 0.179 4 | 22.641 | ||||
| Hex8R | 0.897 | 0.178 8 | 14.306 | ||||
| Hex8EFP[ | 0.874 | 0.174 3 | 22.995 | ||||
| C3D8R[ | 0.895 | 0.175 6 | 14.312 | ||||
| Hex8L[ | 0.15 | 0.669 | 0.067 | 0.133 | 0.012 9 | 21.352 0 | 1.835 |
| Hex8IM[ | 0.669 | 0.133 5 | 21.352 | ||||
| Hex8R | 0.668 | 0.133 1 | 10.651 | ||||
| Hex8EFP[ | 0.656 | 0.130 7 | 17.245 | ||||
| C3D8R[ | 0.669 | 0.133 2 | 10.861 | ||||
| Hex8L[ | 0.30 | 0.359 | 0.062 | 0.072 | 0.012 6 | 11.450 0 | 1.599 |
| Hex8IM [ | 0.359 | 0.071 6 | 11.450 | ||||
| Hex8R | 0.359 | 0.071 5 | 5.718 | ||||
| Hex8EFP[ | 0.355 | 0.070 8 | 9.341 | ||||
| C3D8R[ | 0.359 | 0.071 5 | 5.785 | ||||
| Hex8L[ | 0.60 | 0.126 | 0.046 | 0.025 | 0.009 8 | 3.163 1 | 1.144 |
| Hex8IM[ | 0.060 | 0.012 0 | 1.517 | ||||
| Hex8R | 0.126 | 0.025 1 | 2.004 | ||||
| Hex8EFP[ | 0.125 | 0.024 9 | 3.294 | ||||
| C3D8R[ | 0.060 | 0.024 6 | 2.065 | ||||
Table 4 Comparison of the results of hexahedral micropolar elements (A=analytical, N=numerical)
| Element | lb | u2 | ϕ3 | σ11 | |||
|---|---|---|---|---|---|---|---|
| A | N | A | N | A | N | ||
| Hex8L[ | 0 | 0.941 | 0.069 | 0.188 | 0.012 6 | 23.660 0 | 1.968 |
| Hex8IM[ | 0.941 | 0.187 5 | 23.660 | ||||
| Hex8R | 0.937 | 0.186 8 | 14.947 | ||||
| Hex8EFP[ | 0.912 | 0.181 8 | 23.993 | ||||
| C3D8R[ | 0.937 | 0.186 5 | 14.947 | ||||
| Hex8L[ | 0.05 | 0.900 | 0.069 | 0.179 | 0.012 7 | 22.641 0 | 1.950 |
| Hex8IM[ | 0.900 | 0.179 4 | 22.641 | ||||
| Hex8R | 0.897 | 0.178 8 | 14.306 | ||||
| Hex8EFP[ | 0.874 | 0.174 3 | 22.995 | ||||
| C3D8R[ | 0.895 | 0.175 6 | 14.312 | ||||
| Hex8L[ | 0.15 | 0.669 | 0.067 | 0.133 | 0.012 9 | 21.352 0 | 1.835 |
| Hex8IM[ | 0.669 | 0.133 5 | 21.352 | ||||
| Hex8R | 0.668 | 0.133 1 | 10.651 | ||||
| Hex8EFP[ | 0.656 | 0.130 7 | 17.245 | ||||
| C3D8R[ | 0.669 | 0.133 2 | 10.861 | ||||
| Hex8L[ | 0.30 | 0.359 | 0.062 | 0.072 | 0.012 6 | 11.450 0 | 1.599 |
| Hex8IM [ | 0.359 | 0.071 6 | 11.450 | ||||
| Hex8R | 0.359 | 0.071 5 | 5.718 | ||||
| Hex8EFP[ | 0.355 | 0.070 8 | 9.341 | ||||
| C3D8R[ | 0.359 | 0.071 5 | 5.785 | ||||
| Hex8L[ | 0.60 | 0.126 | 0.046 | 0.025 | 0.009 8 | 3.163 1 | 1.144 |
| Hex8IM[ | 0.060 | 0.012 0 | 1.517 | ||||
| Hex8R | 0.126 | 0.025 1 | 2.004 | ||||
| Hex8EFP[ | 0.125 | 0.024 9 | 3.294 | ||||
| C3D8R[ | 0.060 | 0.024 6 | 2.065 | ||||
Fig. 7 The influence of the variation in the ratio of thickness to bending characteristic length on the dimensionless natural frequencies of sandwich plates with different numbers of meshes ((a) 10×10×2 grid; (b) 66×66×7 grid)
| [1] | ERINGEN A C. Theory of micropolar elasticity[M]. New York: Springer, 1999: 101-248. |
| [2] | AMBARTSUMIAN S A. Micropolar theory of shells and plates[M]. Cham: Springer International Publishing, 2021: 21-24. |
| [3] | 陈东阳. 微极弹性复合材料之理论解析架构与应用[EB/OL]. (2016-05-24) [2025-04-15]. http://140.116.207.99/handle/987654321/163086. |
| CHEN D Y. Micropolar elastic composite materials with chirality: theoretical frameworks and applications[EB/OL]. (2016-05-24) [2025-04-15]. http://140.116.207.99/handle/987654321/163086 (in Chinese). | |
| [4] | 王洪生. 微极弹性力学的虚功原理[J]. 山东建筑工程学院学报, 1993, 8(4): 1-5. |
| WANG H S. Principle of admissible work of microelasticity mechanics[J]. Journal of Shandong Architectural and Civil Engineering Institute, 1993, 8(4): 1-5 (in Chinese). | |
| [5] |
YAO Y, ZHOU Y, CHEN L H, et al. A multifunctional three-dimensional lattice material integrating auxeticity, negative compressibility and negative thermal expansion[J]. Composite Structures, 2024, 337: 118032.
DOI URL |
| [6] |
YAO Y, HE L H, JIN J H, et al. A novel design of mechanical metamaterial incorporating multiple negative indexes[J]. Materials Research Express, 2023, 10(5): 055801.
DOI |
| [7] |
吴浩宇, 杨小超, 王伟, 等. 基于运动学原理的复合材料编织成型工艺仿真技术研究[J]. 图学学报, 2025, 46(5): 1061-1071.
DOI |
|
WU H Y, YANG X C, WANG W, et al. Simulation technology for braiding process of composite materials based on kinematic principles[J]. Journal of Graphics, 2025, 46(5): 1061-1071 (in Chinese).
DOI |
|
| [8] |
HUANG L H, YUAN H, ZHAO H Y. An FEM-based homogenization method for orthogonal lattice metamaterials within micropolar elasticity[J]. International Journal of Mechanical Sciences, 2023, 238: 107836.
DOI URL |
| [9] |
MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415-448.
DOI URL |
| [10] |
ALBERTINI G, ELBANNA A E, KAMMER D S. A three- dimensional hybrid finite element—Spectral boundary integral method for modeling earthquakes in complex unbounded domains[J]. International Journal for Numerical Methods in Engineering, 2021, 122(23): 6905-6923.
DOI URL |
| [11] |
薛雨彤, 王爱增, 岳怡珂, 等. 基于等几何法和模拟退火的复杂壳结构分析及优化[J]. 图学学报, 2024, 45(3): 575-584.
DOI |
|
XUE Y T, WANG A Z, YUE Y K, et al. Complex shell structure analysis and optimization based on isogeometric analysis and simulated annealing algorithm[J]. Journal of Graphics, 2024, 45(3): 575-584 (in Chinese).
DOI |
|
| [12] | YAO Y, NI Y, HE L H. Rutile-mimic 3D metamaterials with simultaneously negative Poisson's ratio and negative compressibility[J]. Materials & Design, 2021, 200: 109440. |
| [13] |
陈震, 周金宇. 材料二维微结构仿真随机概率圆优化填充算法[J]. 图学学报, 2015, 36(6): 944-949.
DOI |
| CHEN Z, ZHOU J Y. Random circles optimization filling algorithm of material two dimensional microstructures simulation[J]. Journal of Graphics, 2015, 36(6): 944-949 (in Chinese). | |
| [14] | 江见鲸, 何放龙, 何益斌, 等. 有限元法及其应用[M]. 北京: 机械工业出版社, 2006: 75-83. |
| JIANG J J, HE F L, HE Y B, et al. Finite element method and application[M]. Beijing: China Machine Press, 2006: 75-83 (in Chinese). | |
| [15] | YAO Y, NI Y, HE L H. Unexpected bending behavior of architected 2D lattice materials[J]. Science Advances, 2023, 9(25): eadg3499. |
| [16] | 许德胜, 凌道盛, 王燕. 八节点非协调实体板单元[J]. 计算力学学报, 2009, 26(2): 264-269. |
| XU D S, LING D S WANG Y, et al. Eight node incompatible solid-plate element[J]. Chinese Journal of Computational Mechanics, 2009, 26(2): 264-269 (in Chinese). | |
| [17] |
GRBČIĆ S, IBRAHIMBEGOVIĆ A, JELENIĆ G. Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes[J]. Computers & Structures, 2018, 205: 1-14.
DOI URL |
| [18] |
FLANAGAN D P, BELYTSCHKO T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706.
DOI URL |
| [19] |
KREJA I, CYWIŃSKI Z. Is reduced integration just a numerical trick[J]. Computers & Structures, 1988, 29(3): 491-496.
DOI URL |
| [20] |
KOHANSAL-VAJARGAH M, ANSARI R. Quadratic tetrahedral micropolar element for the vibration analysis of three-dimensional micro-structures[J]. Thin-Walled Structures, 2021, 167: 108152.
DOI URL |
| [21] |
YAO Y, ZHAO X, CHEN L H, et al. Reduced-integration hexahedral finite element for static and vibration analysis of micropolar continuum[J]. Finite Elements in Analysis and Design, 2025, 251: 104412.
DOI URL |
| [22] | AMEZCUA H R, AYALA A G. A computationally efficient numerical integration scheme for non-linear planestress/strain FEM applications using one-point constitutive model evaluation[J]. Structural Engineering and Mechanics, 2023, 85(1): 89-104. |
| [23] |
GRBAC L, JELENIC G, RIBARIĆ D, et al. Hexahedral finite elements with enhanced fixed-pole interpolation for linear static and vibration analysis of 3D micropolar continuum[J]. International Journal for Numerical Methods in Engineering, 2024, 125(8): e7440.
DOI URL |
| [24] | Taihu Laboratory of Deepsea Technological Science. SAM[EB/OL]. [2025-04-23]. https://www.taihulab.com.cn/info/167.html. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||