Journal of Graphics ›› 2025, Vol. 46 ›› Issue (6): 1200-1208.DOI: 10.11996/JG.j.2095-302X.2025061200
• Core Industrial Software for Manufacturing Products • Previous Articles Next Articles
HUANG Yongyu1(
), DU Lin1(
), QIANG Yiming2, DING Jun2
Received:2025-08-15
Accepted:2025-11-05
Online:2025-12-30
Published:2025-12-27
Contact:
DU Lin
About author:First author contact:HUANG Yongyu (2000-), master student. His main research interest covers ship hull design method. E-mail:nbu_hyy@163.com
Supported by:CLC Number:
HUANG Yongyu, DU Lin, QIANG Yiming, DING Jun. A lightweight framework for one-stop hull reverse modeling from large-amount point cloud data[J]. Journal of Graphics, 2025, 46(6): 1200-1208.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025061200
| 模型 | LWL/m | BWL/m | T/m | V/m3 | CB |
|---|---|---|---|---|---|
| A | 61.96 | 10.82 | 4.12 | 1964.39 | 0.7112 |
| B | 154.79 | 23.63 | 6.00 | 13457.36 | 0.6132 |
Table 1 Specification of the testing ship models
| 模型 | LWL/m | BWL/m | T/m | V/m3 | CB |
|---|---|---|---|---|---|
| A | 61.96 | 10.82 | 4.12 | 1964.39 | 0.7112 |
| B | 154.79 | 23.63 | 6.00 | 13457.36 | 0.6132 |
| 模型 | 点云数量 | 坐标轴 | μ | σ |
|---|---|---|---|---|
| A | 115 737 | X | 0.1 | 2.0e-3×LA |
| Y | 0.1 | 2.0e-2×BA | ||
| Z | 0.1 | 1.5e-3×DA | ||
| B | 170 866 | X | 0.1 | 2.0e-3×LB |
| Y | 0.1 | 2.0e-2×BB | ||
| Z | 0.1 | 1.5e-3×DB |
Table 2 Characteristics of artificial noise on testing models
| 模型 | 点云数量 | 坐标轴 | μ | σ |
|---|---|---|---|---|
| A | 115 737 | X | 0.1 | 2.0e-3×LA |
| Y | 0.1 | 2.0e-2×BA | ||
| Z | 0.1 | 1.5e-3×DA | ||
| B | 170 866 | X | 0.1 | 2.0e-3×LB |
| Y | 0.1 | 2.0e-2×BB | ||
| Z | 0.1 | 1.5e-3×DB |
Fig. 4 Visual of models with artificial noise, the port is original 3D points, the starboard is the noisy point cloud data ((a) Ship model A; (b) Ship model B)
| 点云数量 | 原始点云 | 栅格化后点云 | 压缩率/% | 时间/s | LWL误差/% | BWL误差/% |
|---|---|---|---|---|---|---|
| 船模A | 115 737 | 2 048 (32×64) | 98.2 | 8.68 | 1.11 | 1.36 |
| 8 192 (64×128) | 92.9 | 9.95 | 1.23 | 1.84 | ||
| 32 768 (128×256) | 71.7 | 12.32 | 2.47 | 2.16 | ||
| 船模B | 170 866 | 20 248 (32×64) | 98.8 | 12.67 | 1.16 | 1.52 |
| 8 192 (64×128) | 95.2 | 13.91 | 1.38 | 1.91 | ||
| 32 768 (128×256) | 80.8 | 16.47 | 2.13 | 2.63 |
Table 3 Comparison of compression performance
| 点云数量 | 原始点云 | 栅格化后点云 | 压缩率/% | 时间/s | LWL误差/% | BWL误差/% |
|---|---|---|---|---|---|---|
| 船模A | 115 737 | 2 048 (32×64) | 98.2 | 8.68 | 1.11 | 1.36 |
| 8 192 (64×128) | 92.9 | 9.95 | 1.23 | 1.84 | ||
| 32 768 (128×256) | 71.7 | 12.32 | 2.47 | 2.16 | ||
| 船模B | 170 866 | 20 248 (32×64) | 98.8 | 12.67 | 1.16 | 1.52 |
| 8 192 (64×128) | 95.2 | 13.91 | 1.38 | 1.91 | ||
| 32 768 (128×256) | 80.8 | 16.47 | 2.13 | 2.63 |
Fig. 5 Surface interpolation results for two samples (the port is the noisy point cloud-data, the starboard is the fitted surface) ((a) Ship model A; (b) Ship model B)
Fig. 10 Sample A station line before and after correction ((a) The No. 1 station line ; (b) The No. 32 station line; (c) The No. 94 station line; (d) The No. 126 station line)
Fig. 12 Key steps in the traditional FreeCAD modeling workflow ((a) Rough surface generated after point cloud skinning; (b) Final surface after contour fitting and redundant trimming)
| 参数 | 原始模型A | 最终模型A | 模型A的误差 | 原始模型B | 最终模型B | 模型B的误差 |
|---|---|---|---|---|---|---|
| LWL | 61.96 m | 62.66 m | 1.13% | 154.79 m | 156.92 m | 1.38% |
| BWL | 10.82 m | 11.11 m | 2.68% | 23.63 m | 24.05 m | 1.78% |
| Draft | 4.12 m | 4.13 m | 0.24% | 6.00 m | 6.05 m | 0.83% |
| Volume | 1964.39 m3 | 1947.03 m3 | -0.88% | 13457.36 m3 | 13315.77 m3 | -1.05% |
| CB | 0.711 2 | 0.677 2 | -4.78% | 0.613 2 | 0.583 2 | -4.89% |
Table 4 Comparison between the original and modified models
| 参数 | 原始模型A | 最终模型A | 模型A的误差 | 原始模型B | 最终模型B | 模型B的误差 |
|---|---|---|---|---|---|---|
| LWL | 61.96 m | 62.66 m | 1.13% | 154.79 m | 156.92 m | 1.38% |
| BWL | 10.82 m | 11.11 m | 2.68% | 23.63 m | 24.05 m | 1.78% |
| Draft | 4.12 m | 4.13 m | 0.24% | 6.00 m | 6.05 m | 0.83% |
| Volume | 1964.39 m3 | 1947.03 m3 | -0.88% | 13457.36 m3 | 13315.77 m3 | -1.05% |
| CB | 0.711 2 | 0.677 2 | -4.78% | 0.613 2 | 0.583 2 | -4.89% |
| [1] | 刘东生, 陈建林, 费点, 等. 基于深度相机的大场景三维重建[J]. 光学精密工程, 2020, 28(1): 234-243. |
|
LIU D S, CHEN J L, FEI D, et al. Three-dimensional reconstruction of large-scale scene based on depth camera[J]. Optics and Precision Engineering, 2020, 28(1): 234-243 (in Chinese).
DOI URL |
|
| [2] |
XIAO X W, WANG K, ZHONG Z C, et al. A novel data-driven based high-precision building roof contour full-automatic extraction and structured 3D reconstruction method combining stereo images and LiDAR points[J]. International Journal of Digital Earth, 2025, 18(1): 2484668.
DOI URL |
| [3] |
WEI Y, DING Z R, HUANG H C, et al. A non-contact measurement method of ship block using image-based 3D reconstruction technology[J]. Ocean Engineering, 2019, 178: 463-475.
DOI URL |
| [4] |
HONG S, KIM J. Three-dimensional visual mapping of underwater ship hull surface using image stitching geometry[J]. Ocean Engineering, 2023, 269: 113575.
DOI URL |
| [5] |
QIU S Y, WANG S Z, CHEN X Z, et al. Ship shape reconstruction for three-dimensional situational awareness of smart ships based on neural radiation field[J]. Engineering Applications of Artificial Intelligence, 2024, 136: 108858.
DOI URL |
| [6] | 王江安, 庞大为, 黄乐, 等. 基于多尺度特征递归卷积的稠密点云重建网络[J]. 图学学报, 2022, 43(5): 875-883. |
| WANG J A, PANG D W, HUANG L, et al. Dense point cloud reconstruction network using multi-scale feature recursive convolution[J]. Journal of Graphics, 2022, 43(5): 875-883 (in Chinese). | |
| [7] | 王道累, 丁子健, 杨君, 等. 基于体素网格特征的NeRF大场景重建方法[J]. 图学学报, 2025, 46(3): 502-509. |
|
WANG D L, DING Z J, YANG J, et al. Large scene reconstruction method based on voxel grid feature of NeRF[J]. Journal of Graphics, 2025, 46(3): 502-509 (in Chinese).
DOI |
|
| [8] | 杨永俊, 杨仁友, 李俞锋, 等. 基于AUV搭载单目-线激光器的水下目标三维重建方法[EB/OL]. (2025-10-20) [2025-10-21]. https://link.cnki.net/urlid/42.1294.TH.20251020.1555.008. |
| YANG Y J, YANG R Y, LI Y F, et al. Underwater target 3D reconstruction method based on AUV equipped with monocular line laser[EB/OL]. (2025-10-20) [2025-10-21]. https://link.cnki.net/urlid/42.1294.TH.20251020.1555.008. (in Chinese). | |
| [9] | YU X M, TANG L L, RAO Y M, et al. Point-BERT: pre-training 3D point cloud transformers with masked point modeling[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 19291-19300. |
| [10] | HUANG Z T, YU Y K, XU J W, et al. PF-Net: point fractal network for 3D point cloud completion[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 7659-7667. |
| [11] | 何星, 朱哲, 燕雪峰, 等. 融合图像信息的跨模态Transformer点云补全算法[J]. 计算机辅助设计与图形学学报, 2024, 36(7): 1026-1033. |
| HE X, ZHU Z, YAN X F, et al. Cross-modal Transformer for point cloud completion[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(7): 1026-1033 (in Chinese). | |
| [12] | LUO S T, HU W. Diffusion probabilistic models for 3D point cloud generation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2836-2844. |
| [13] | 张荣国, 毕键昌, 胡静, 等. 选择性状态空间双序列特征强化编解码三维点云形状补全方法[EB/OL]. (2023-03-21) [2025-05-09]. https://link.cnki.net/urlid/11.2925.tp.20250321.0946.002. |
| ZHANG R G, BI J C, HU J, et al. Selective-state-space based dual-sequence feature-enhanced coding and decoding method for 3D point cloud shape completion[EB/OL]. (2023-03-21) [2025-05-09]. https://link.cnki.net/urlid/11.2925.tp.20250321.0946.002. (in Chinese). | |
| [14] |
ZHANG D, LU X, QIN H, et al. Pointfilter: point cloud filtering via encoder-decoder modeling[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(3): 2015-2027.
DOI URL |
| [15] | 徐晨, 倪蓉蓉, 赵耀. 融合稀疏点云补全的3D目标检测算法[J]. 图学学报, 2021, 42(1): 37-43. |
|
XU C, NI R R, ZHAO Y. 3D object detection algorithm combined with sparse point cloud completion[J]. Journal of Graphics, 2021, 42(1): 37-43 (in Chinese).
DOI |
|
| [16] | 冯肖维, 杜光皓, 赵一平, 等. 点云鲁棒低秩联合估计重构[J]. 计算机辅助设计与图形学学报, 2023, 35(9): 1344-1352. |
| FENG X W, DU G H, ZHAO Y P, et al. Point cloud reconstruction based on robust low-rank collaborative estimation[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(9): 1344-1352 (in Chinese). | |
| [17] |
时志鹏, 冯肖维, 赵一平. 改进邻域漂移的多假设检验点云降噪[J]. 计算机工程, 2024, 50(6): 276-286.
DOI |
|
SHI Z P, FENG X W, ZHAO Y P. Improved multi-hypothesis test point cloud noise reduction for neighborhood drift[J]. Computer Engineering, 2024, 50(6): 276-286 (in Chinese).
DOI |
|
| [18] | CARR J C, BEATSON R K, CHERRIE J B, et al. Reconstruction and representation of 3D objects with radial basis functions[C]// The 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001: 67-76. |
| [19] | 王文培, 张惊雷, 贾鑫. 基于边占用分割距离场的点云表面重建[J/OL]. (2025-02-14) [2025-05-09]. https://link.cnki.net/urlid/11.2925.TP.20250214.1532.026. |
| WANG W P, ZHANG J L, JIA X. Surface reconstruction of point clouds based on edge occupancy segmentation distance field[EB/OL]. (2025-02-14) [2025-05-09]. https://link.cnki.net/urlid/11.2925.TP.20250214.1532.026. (in Chinese). | |
| [20] |
刘圣军, 陶珊珊, 王海波, 等. 基于平面路径的扫掠面高精度重建[J]. 图学学报, 2025, 46(2): 425-436.
DOI |
|
LIU S J, TAO S S, WANG H B, et al. High-precision reconstruction of swept surfaces with a planar path[J]. Journal of Graphics, 2025, 46(2): 425-436 (in Chinese).
DOI |
|
| [21] |
DUAN W Y, ZHANG P X, HUANG L M, et al. Ship hull surface reconstruction from scattered points cloud using an RBF neural network mapping technology[J]. Computers & Structures, 2023, 281: 107012.
DOI URL |
| [22] | LAFARGE F, ALLIEZ P. Surface reconstruction through point set structuring[J]. Computer Graphics Forum, 2013, 32(2pt2): 225-234. |
| [23] |
BERGER M, TAGLIASACCHI A, SEVERSKY L M, et al. A survey of surface reconstruction from point clouds[J]. Computer Graphics Forum, 2017, 36(1): 301-329.
DOI URL |
| [24] | 杜林, 李广年, 郑彭军. 船体曲面特征的计算机视觉认知与生成机制研究[J]. 船舶力学, 2022, 26(7): 949-961. |
| DU L, LI G N, ZHENG P J. Ship hull feature recognition and creation functionality investigation based on computer vision technology[J]. Journal of Ship Mechanics, 2022, 26(7): 949-961 (in Chinese). | |
| [25] | 舒跃辉, 杜林, 李广年. 基于卷积生成对抗网络的船型数据噪声处理方法研究[J]. 中国造船, 2023, 64(4): 164-175. |
| SHU Y H, DU L, LI G N. Investigation of ship hull surface data processing based on generative adversarial networks[J]. Shipbuilding of China, 2023, 64(4): 164-175 (in Chinese). | |
| [26] | 黄永裕, 何灵伟, 杨沂铮, 等. 三维生成式大模型在船型概念设计中的可行性研究[J]. 中国舰船研究, 2025, 20(6): 1-14. |
| HUANG Y Y, HE L W, YANG Y Z, et al. An investigation of AI-based 3D model generators for ship hull design at the conceptual design stage[J]. Chinese Journal of Ship Research, 2025, 20(6): 1-14 (in Chinese). |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||