| [1] |
XIAO G, YANG D, XU L, et al. The application of artificial intelligence technology in shipping: a bibliometric review[J]. Journal of Marine Science and Engineering, 2024, 12(4): 624.
DOI
URL
|
| [2] |
FAHRNHOLZ S F, CAPRACE J D. A machine learning approach to improve sailboat resistance prediction[J]. Ocean Engineering, 2022, 257: 111642.
DOI
URL
|
| [3] |
LANG X, WU D, MAO W G. Comparison of supervised machine learning methods to predict ship propulsion power at sea[J]. Ocean Engineering, 2022, 245: 110387.
DOI
URL
|
| [4] |
SHEN Y J, YE S X, ZHANG Y W, et al. Application of machine learning for bulbous bow optimization design and ship resistance prediction[J]. Applied Sciences, 2025, 15(6): 2934.
DOI
URL
|
| [5] |
GUPTA P, RASHEED A, STEEN S. Ship performance monitoring using machine-learning[J]. Ocean Engineering, 2022, 254: 111094.
DOI
URL
|
| [6] |
LEVINE M D, EDWARDS S J, HOWARD D, et al. Multi-fidelity data-adaptive autonomous seakeeping[J]. Ocean Engineering, 2024, 292: 116322.
DOI
URL
|
| [7] |
LIU J, ZHANG B J, HU L F, et al. Research on hull form optimization at multiple speeds based on machine learning and ship model experiments[J]. Engineering Applications of Artificial Intelligence, 2025, 160: 111882.
DOI
URL
|
| [8] |
BAGHERI H, GHASSEMI H. Genetic algorithm applied to optimization of the ship hull form with respect to seakeeping performance[J]. Transactions of FAMENA, 2014, 38(3): 45-58.
|
| [9] |
ZHANG S L, CHEN Y Z. Research on deep learning method in ship hull form optimization[C]// The 3rd International Conference on Computer Science and Communication Technology. Beijing: SPIE, 2022: 125066O.
|
| [10] |
WEI Y B, WANG Y J, WAN D C. Hull form optimization based on multi-fidelity deep neural network[J]. Chinese Journal of Ship Research, 2024, 19(6): 74-81.
|
| [11] |
MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106-119.
DOI
URL
|
| [12] |
YONEKURA K, OMORI K, QI X, et al. Designing ship hull forms using generative adversarial networks[J]. AI, 2025, 6(6): 129.
DOI
URL
|
| [13] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
DOI
URL
|
| [14] |
杜林, 李胜忠, 李广年, 等. 基于深度卷积生成式对抗网络的船型特征认知与条件生成方法[J]. 船舶力学, 2024, 28(8): 1162-1174.
|
|
DU L, LI S Z, LI G N, et al. A ship hull offset feature cognition and generation method based on conditional deep convolutional generative adversarial networks[J]. Journal of Ship Mechanics, 2024, 28(8): 1162-1174 (in Chinese).
|
| [15] |
THAKUR S, SAXENA N V, ROY P S. Generative AI in ship design[EB/OL]. [2025-03-31]. https://arxiv.org/pdf/2408.16798.pdf.
|
| [16] |
KERAMAT H, KIRCHEN P, HANNAN M, et al. A reward-directed diffusion framework for generative design optimization[EB/OL]. [2025-03-31]. https://arxiv.org/abs/2508.01509v1.pdf.
|
| [17] |
KIM J H, ROH M I, YEO I C. Hull form optimization of fully parameterized small ships using characteristic curves and deep neural networks[J]. International Journal of Naval Architecture and Ocean Engineering, 2024, 16: 100596.
DOI
URL
|
| [18] |
BAGAZINSKI N J, AHMED F. ShipGen: a diffusion model for parametric ship hull generation with multiple objectives and constraints[J]. Journal of Marine Science and Engineering, 2023, 11(12): 2215.
DOI
URL
|
| [19] |
BAGAZINSKI N J, AHMED F. C-ShipGen: a conditional guided diffusion model for parametric ship hull design[EB/OL]. [2025-03-31]. https://arxiv.org/pdf/2407.03333.pdf.
|
| [20] |
KHAN S, GOUCHER-LAMBERT K, KOSTAS K, et al. ShipHullGAN: a generic parametric modeller for ship hull design using deep convolutional generative model[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 411: 116051.
DOI
URL
|
| [21] |
BAGAZINSKI N J, AHMED F. Ship-D: ship hull dataset for design optimization using machine learning[EB/OL]. [2025-03-31]. https://arxiv.org/pdf/2305.08279.pdf.
|