Journal of Graphics ›› 2023, Vol. 44 ›› Issue (5): 988-996.DOI: 10.11996/JG.j.2095-302X.2023050988
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
WANG Ke-xin(), JIN Ying-han, ZHANG Dong-liang(
)
Received:
2023-03-21
Accepted:
2023-07-06
Online:
2023-10-31
Published:
2023-10-31
Contact:
ZHANG Dong-liang (1971-), professor, Ph.D. His main research interests cover computer-aided design, computer graphics and interactive design, etc. E-mail:About author:
WANG Ke-xin (1998-), master student. Her main research interest covers computer graphics. E-mail:22021133@zju.edu.cn
Supported by:
CLC Number:
WANG Ke-xin, JIN Ying-han, ZHANG Dong-liang. Virtual glasses try-on using a depth camera[J]. Journal of Graphics, 2023, 44(5): 988-996.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023050988
Fig. 4 Align the glasses model to the face model ((a) The face model and glasses model before alignment; (b) The aligned face model and glasses model)
Fig. 6 Implementation of occlusion culling ((a) Glasses rendering result I1; (b) Glasses and face rendering result I2; (c) Occlusion culling result I3)
Fig. 10 Comparison of point clouds from different views before and after feature point cloud registration ((a) Before feature point cloud registration; (b) After feature point cloud registration)
重叠率 | PL30和PF配准 | PR30和PF配准 |
---|---|---|
特征点云配准后 | 85.13 | 85.29 |
重叠部分点云配准后 | 94.79 | 91.60 |
Table 1 Oerlap rates after feature point cloud registration and overlapping part point cloud registration (%)
重叠率 | PL30和PF配准 | PR30和PF配准 |
---|---|---|
特征点云配准后 | 85.13 | 85.29 |
重叠部分点云配准后 | 94.79 | 91.60 |
指标 | 平均分(1~5) |
---|---|
眼镜佩戴精准度 | 4.3 |
3D效果真实感 | 4.3 |
易用性 | 4.8 |
使用意愿 | 4.7 |
Table 2 Virtual try-on usability study results
指标 | 平均分(1~5) |
---|---|
眼镜佩戴精准度 | 4.3 |
3D效果真实感 | 4.3 |
易用性 | 4.8 |
使用意愿 | 4.7 |
[1] |
LIANG J B, LIN M C. Machine learning for digital try-on: challenges and progress[J]. Computational Visual Media, 2021, 7(2): 159-167.
DOI |
[2] | SONG W S, GONG Y H, WANG Y C. VTONShoes: virtual try-on of shoes in augmented reality on a mobile device[C]// 2022 IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2022: 234-242. |
[3] | KIPS R, JIANG R, BA S, et al. Real-time virtual-try-on from a single example image through deep inverse graphics and learned differentiable renderers[J]. Computer Graphics Forum, 2022, 41(2): 29-40. |
[4] | MARELLI D, BIANCO S, CIOCCA G. A web application for glasses virtual try-on in 3D space[C]// The 23rd IEEE International Symposium on Consumer Technologies. New York: IEEE Press, 2019: 299-303. |
[5] | HUANG W Y, HSIEH C H, YEH J S. Vision-based virtual eyeglasses fitting system[C]// 2013 IEEE International Symposium on Consumer Electronics. New York: IEEE Press, 2013: 45-46. |
[6] | NISWAR A, KHAN I R, FARBIZ F. Virtual try-on of eyeglasses using 3D model of the head[C]// The 10th International Conference on Virtual Reality Continuum and Its Applications in Industry. New York: ACM, 2011: 435-438. |
[7] |
HUANG S H, YANG Y I, CHU C H. Human-centric design personalization of 3D glasses frame in markerless augmented reality[J]. Advanced Engineering Informatics, 2012, 26(1): 35-45.
DOI URL |
[8] | TANG D F, ZHANG J Y, TANG K T, et al. Making 3D eyeglasses try-on practical[C]// 2014 IEEE International Conference on Multimedia and Expo Workshops. New York: IEEE Press, 2014: 1-6. |
[9] | 章锌栋, 付东翔. 基于三维镜框建模的眼镜虚拟试戴系统[J]. 电子科技, 2022, 35(9): 52-57. |
ZHANG X D, FU D X. Glasses virtual try-on system based on 3D frame modeling[J]. Electronic Science and Technology, 2022, 35(9): 52-57. (in Chinese) | |
[10] | 刘越. 考虑低重叠率的点云地图配准方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LIU Y. Research on low-overlap point cloud map registration[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese) | |
[11] |
FERDANI D, FANINI B, PICCIOLI M C, et al. 3D reconstruction and validation of historical background for immersive VR applications and games: the case study of the Forum of Augustus in Rome[J]. Journal of Cultural Heritage, 2020, 43: 129-143.
DOI URL |
[12] |
KIEMEN A L, BRAXTON A M, GRAHN M P, et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution[J]. Nature Methods, 2022, 19(11): 1490-1499.
DOI |
[13] | BLANZ V, VETTER T. A morphable model for the synthesis of 3D faces[C]// The 26th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1999: 187-194. |
[14] | TRAN A T, HASSNER T, MASI I, et al. Regressing robust and discriminative 3D morphable models with a very deep neural network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1493-1502. |
[15] | TEWARI A, ZOLLHÖFER M, KIM H, et al. Notice of removal: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction[C]// 2017 IEEE International Conference on Computer Vision Workshops. New York: IEEE Press, 2018: 1274-1283. |
[16] | FENG Y, WU F, SHAO X H, et al. Joint 3D face reconstruction and dense alignment with position map regression network[C]// European Conference on Computer Vision. Cham: Springer, 2018: 557-574. |
[17] | ZHANG S, YU H, DONG J Y, et al. Automatic reconstruction of dense 3D face point cloud with a single depth image[C]// 2015 IEEE International Conference on Systems, Man, and Cybernetics. New York: IEEE Press, 2016: 1439-1444. |
[18] |
WANG C W, PENG C C. 3D face point cloud reconstruction and recognition using depth sensor[J]. Sensors, 2021, 21(8): 2587.
DOI URL |
[19] |
BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
DOI URL |
[20] | KAZEMI V, SULLIVAN J. One millisecond face alignment with an ensemble of regression trees[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 1867-1874. |
[21] | KAZHDAN M, BOLITHO M, HOPPE H. Poisson surface reconstruction[C]// The 4th Eurographics Symposium on Geometry Processing. New York: ACM, 2006: 61-70. |
[22] | HEARN D, BAKER M P, CARITHERS W. Computer graphics with OpenGL[M]. Upper Saddle Rive: Prentice Hall, 2003: 365-368. |
[1] | FAN Qing1,SHEN Xu-kun1,2. Hand dynamic 3D reconstruction using multiple keypoint-to-keypoint correspondences [J]. Journal of Graphics, 2020, 41(5): 709-715. |
[2] | FAN Qiang1, LIU Peng1, YANG Jun2, ZHOU Pei-xi1. Improved 3D-NDT point cloud registration algorithm based on 3D-Harris and FPFH [J]. Journal of Graphics, 2020, 41(4): 567-575. |
[3] | ZHAO Fuqun1,2, ZHOU Mingquan2,3, GENG Guohua2. Point Cloud Registration Algorithm Based on Local Features [J]. Journal of Graphics, 2018, 39(3): 389-394. |
[4] | ZHAO Wentao1, CHEN Xiongwen2, ZHANG Chaohe3. Research and Application on Fast Construction of Welding Joints in Bus Frame Finite Element Model [J]. Journal of Graphics, 2018, 39(1): 104-108. |
[5] | ZHAO Fuqun1,2, ZHOU Mingquan2,3. Improved Probability Iterative Closest Point Registration Algorithm [J]. Journal of Graphics, 2017, 38(1): 15-22. |
[6] | Shao Xuqiang1, Liu Yan2, Wang Xinying1. An Efficient Surface Reconstruction Method for Lagrangian Particle Fluid [J]. Journal of Graphics, 2016, 37(5): 607-613. |
[7] | Zhao Bao, Hu Xiaochun, Zhang Qingqing. Reconstruction of Shoe Last Surface Based#br# on Plantar and Instep Girths [J]. Journal of Graphics, 2013, 34(6): 17-21. |
[8] | CHEN Hui-qun, LI Jing-yan. Surface Reconstruction from High-density Point Cloud Based on Deformed Meshes [J]. Journal of Graphics, 2011, 32(2): 64-67. |
[9] | WU Xue-mei, WEN Jia, YU Guang-bin, LI Gui-xian, SHAN De-bin. Surface Reconstruction Based on Points Cloud Data from CMM [J]. Journal of Graphics, 2011, 32(2): 68-72. |
[10] | WANG Yu-hui, ZHANG Yu-ru. Tooth Surface Reconstruction by Catmull-Clark Subdivision and Mesh Modification [J]. Journal of Graphics, 2010, 31(6): 56-62. |
[11] | MIAO Lan-fang, ZHOU Ting-fang, PENG Qun-sheng. Fast Implicit Surface Reconstruction for Densely Sampled Point Model [J]. Journal of Graphics, 2010, 31(2): 84-91. |
[12] | WANG Xiao-ming, LIU Ji-xiao. A New Approach of Adaptive Compression and Mesh Generation for Large Scale Scattered Data [J]. Journal of Graphics, 2010, 31(2): 92-96. |
[13] | ZHAN Chang-qing, LIU Su. Reverse Modeling and Analysis of Automobile Engine Fan Blades [J]. Journal of Graphics, 2010, 31(1): 172-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||