Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 1084-1095.DOI: 10.11996/JG.j.2095-302X.2024051084
• Industrial Design • Previous Articles Next Articles
TAN Kun1(), WANG Xupeng1,2(
), ZHAO Jiaxin2, HUANG Yuzhe1, LI Xu1, LI Jiachen1
Received:
2024-05-10
Revised:
2024-07-11
Online:
2024-10-31
Published:
2024-10-31
Contact:
WANG Xupeng
About author:
First author contact:TAN Kun (1997-), master student. His main research interests cover “medical-engineering” cross-innovation design and simulation. E-mail:tankunticoa@foxmail.com
Supported by:
CLC Number:
TAN Kun, WANG Xupeng, ZHAO Jiaxin, HUANG Yuzhe, LI Xu, LI Jiachen. Design of knee joint variable stiffness protector based on lower limb biomechanical characteristics[J]. Journal of Graphics, 2024, 45(5): 1084-1095.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024051084
Fig. 2 Definition of experimental area and grid division ((a) Mesh division diagram of knee joint; (b) Longitudinal midpoint of knee circumference line)
纱线原料 | 纱线细度/tex |
---|---|
高弹涤纶丝 | 16.67/96 f (150 D/96 f) |
高弹氨纶丝 | 7.78/100 f (70D/100 f) |
橡筋纱 | 124.44 (1 120 D) |
Table 1 Basic parameters of yarn
纱线原料 | 纱线细度/tex |
---|---|
高弹涤纶丝 | 16.67/96 f (150 D/96 f) |
高弹氨纶丝 | 7.78/100 f (70D/100 f) |
橡筋纱 | 124.44 (1 120 D) |
尺码 | 膝关节护具(宽度) | 膝关节(围长) | ||||
---|---|---|---|---|---|---|
下围 | 膝围 | 上围 | 小腿 | 膝围 | 大腿 | |
M | 15 | 14 | 17 | 36~39 | 30~35 | 41~44 |
L | 17 | 16 | 19 | 40~43 | 36~40 | 45~48 |
XL | 18 | 17 | 21 | 44~48 | 41~45 | 48~52 |
Lx | 19 | 16 | 17 | 42 | 40 | 48 |
Table 2 Knee joint protector size chart/mm
尺码 | 膝关节护具(宽度) | 膝关节(围长) | ||||
---|---|---|---|---|---|---|
下围 | 膝围 | 上围 | 小腿 | 膝围 | 大腿 | |
M | 15 | 14 | 17 | 36~39 | 30~35 | 41~44 |
L | 17 | 16 | 19 | 40~43 | 36~40 | 45~48 |
XL | 18 | 17 | 21 | 44~48 | 41~45 | 48~52 |
Lx | 19 | 16 | 17 | 42 | 40 | 48 |
Fig. 16 Qualitative zoning optimization design diagram for stiffness of joint protective equipment fabric ((a) Protective gear zoning design; (b) Side support of protective gear design; (c) Design of density reduction in the popliteal fossa area)
Fig. 17 Knee joint and protective gear model ((a) Uniform knitted protective gear; (b) X pressurized protective gear; (c) Knee joint stiffness protective gear)
项目 | 材料1 |
---|---|
成分 | 66%锦纶、18%聚酯纤维、16%氨纶 |
弹性模量/MPa | 0.429 4 |
泊松比 | 0.34 |
密度/t·mm-3 | 9.86e-10 |
Table 3 Material properties of sports protective equipment
项目 | 材料1 |
---|---|
成分 | 66%锦纶、18%聚酯纤维、16%氨纶 |
弹性模量/MPa | 0.429 4 |
泊松比 | 0.34 |
密度/t·mm-3 | 9.86e-10 |
膝关节 | 弹性模量/MPa | 泊松比 | 密度/t·mm-3 |
---|---|---|---|
骨骼 | 7 300 | 0.3 | 1.90E-10 |
肌肉软组织 | 0.15 | 0.45 | 1.10E-10 |
Table 4 Materials properties of knee joint bones, muscles, and soft tissues
膝关节 | 弹性模量/MPa | 泊松比 | 密度/t·mm-3 |
---|---|---|---|
骨骼 | 7 300 | 0.3 | 1.90E-10 |
肌肉软组织 | 0.15 | 0.45 | 1.10E-10 |
护具 | 压力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
Table 5 Surface contact pressure distribution of knee joint skin/MPa
护具 | 压力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
Table 6 Stress distribution of knee joint protectors/MPa
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
Table 7 Stress distribution of knee joint surface/MPa
护具 | 应力 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
护具 | 位移 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
Table 8 Surface displacement distribution of knee joint skin/mm
护具 | 位移 | 前侧 | 右侧 | 后侧 | 左侧 |
---|---|---|---|---|---|
护具A | ![]() | ![]() | ![]() | ![]() | ![]() |
护具B | ![]() | ![]() | ![]() | ![]() | ![]() |
护具C | ![]() | ![]() | ![]() | ![]() | ![]() |
Fig. 22 Experimental process diagram ((a) Front electrode sticking; (b) Right electrode sticking; (c) Rear electrode plate pasting; (d) Lower limb electromyographic signal acquisition)
[1] | 陈凌娴, 李俊, 王敏. 护膝防护性能及其功能设计研究进展[J]. 毛纺科技, 2022, 50(3): 117-123. |
CHEN L X, LI J, WANG M. Research progress of the protection performance and functional design of kneepad[J]. Wool Textile Journal, 2022, 50(3): 117-123 (in Chinese). | |
[2] | 于晓平. 普通高校大学生膝关节损伤调查及预防分析[J]. 辽宁体育科技, 2020, 42(1): 124-128. |
YU X P. An analysis on survey and precaution of college students’ knee-joints juries in colleges and universities[J]. Liaoning Sport Science and Technology, 2020, 42(1): 124-128 (in Chinese). | |
[3] | 刘宸鋆, 荣湘江, 刘华, 等. 膝关节护具对男性大学生慢跑状态下膝关节角度的影响[J]. 中国康复医学杂志, 2021, 36(9): 1158-1161. |
LIU C Y, RONG X J, LIU H, et al. The effect of knee joint protectors on the knee joint angle of male college students during jogging[J]. Chinese Journal of Rehabilitation Medicine, 2021, 36(9): 1158-1161 (in Chinese). | |
[4] | 张峻霞, 张子倩, 邵洋洋, 等. 基于运动生物力学的护膝设计评价[J]. 包装工程, 2020, 41(24): 1-7. |
ZHANG J X, ZHANG Z Q, SHAO Y Y, et al. Evaluation of kneepad design based on sports biomechanics[J]. Packaging Engineering, 2020, 41(24): 1-7 (in Chinese). | |
[5] | POPA A A, DRIMUS A, MACDONALD E W, et al. A conformal, optimized 3D printed kneepad with deformation sensing[J]. IEEE Access, 2021, 9: 126873-126881. |
[6] | 张芳兰, 刘龙吉, 姚宛彤. 面向关键用户需求的踝足矫形器定制化设计方法[J]. 图学学报, 2021, 42(5): 841-848. |
ZHANG F L, LIU L J, YAO W T. Customized design method of ankle-foot orthosis oriented to the needs of key users[J]. Journal of Graphics, 2021, 42(5): 841-848 (in Chinese). | |
[7] |
白宇, 王坤. 基于参数化的3D打印个性化外固定支具设计研究[J]. 图学学报, 2023, 44(5): 1050-1056.
DOI |
BAI Y, WANG K. Research on personalized external fixator design based on parametric 3D printing[J]. Journal of Graphics, 2023, 44(5): 1050-1056 (in Chinese).
DOI |
|
[8] | 王旭鹏, 李琳, 王芸倩, 等. 适老化矫形康复类可穿戴产品的设计方法研究[EB/OL]. [2024-01-03]. http://kns.cnki.net/kcms/detail/61.1294.N.20230424.1401.006.html. |
WANG X P, LI L, WANG Y Q, et al. Research on the design methods of elderly-oriented wearable orthopedic rehabilitation products[EB/OL]. [2024-01-03]. http://kns.cnki.net/kcms/detail/61.1294.N.20230424.1401.006.html (in Chinese). | |
[9] | 段洁洁, 宋晓霞. 三维成形针织护膝的编织工艺设计与开发[J]. 服装学报, 2022, 7(3): 218-222. |
DUAN J J, SONG X X. Weaving process design and development of three-dimensional knitted kneepad[J]. Journal of Clothing Research, 2022, 7(3): 218-222 (in Chinese). | |
[10] |
王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
DOI |
WANG Y T, CONG H L, GU H Y. Structural design and thermal-moist comfort of weft knitted knee pads[J]. Journal of Textile Research, 2023, 44(10): 68-74 (in Chinese).
DOI |
|
[11] | 胡紫薇, 杨洪君. 运动护膝舒适性影响因素探究[J]. 设计, 2020, 33(7): 20-24. |
HU Z W, YANG H J. Research on influencing factors of comfort of sports knee support[J]. Design, 2020, 33(7): 20-24 (in Chinese). | |
[12] | 张丰烁, 王燕珍. 基于女青年下肢关节活动角度变化的皮肤形变研究[J]. 北京服装学院学报: 自然科学版, 2022, 42(3): 35-43. |
ZHANG F S, WANG Y Z. Study on skin deformation based on angle change of lower limb joint activity in young women[J]. Journal of Beijing Institute of Fashion Technology: Natural Science Edition, 2022, 42(3): 35-43 (in Chinese). | |
[13] | 张春强. 足踝护具产品设计理论与方法研究[D]. 西安: 西安理工大学, 2022. |
ZHANG C Q. Research on the theory and method for foot and ankle protection design[D]. Xi’an: Xi’an University of Technology, 2022 (in Chinese). | |
[14] | 曾露露, 谢红. 有限元法预测运动护膝在不同运动状态下对膝关节韧带的影响[J]. 中国组织工程研究, 2023, 27(36): 5771-5777. |
ZENG L L, XIE H. Finite element method for predicting the effect of sports knee brace on knee ligaments under different sports conditions[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(36): 5771-5777 (in Chinese). | |
[15] | 谢红, 刘星辰, 沈云萍. 弹性护膝防护效果预测模型的分析[J]. 服装学报, 2023, 8(2): 108-117. |
XIE H, LIU X C, SHEN Y P. Analysis of protective effect prediction models of elastic knee pads[J]. Journal of Clothing Research, 2023, 8(2): 108-117 (in Chinese). | |
[16] |
AKRAMI M, QIAN Z H, ZOU Z M, et al. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions[J]. Biomechanics and Modeling in Mechanobiology, 2018, 17(2): 559-576.
DOI PMID |
[17] | KUZMICHEV V E, CHENG Z. Sizing and fit for pressure garments[M]//ZAKARIA N, GUPTA D. Anthropometry, Apparel Sizing and Design. 2nd ed. Oxford: Woodhead Publishing, 2020: 331-370. |
[18] | 李海涛. 全成型医用压力绷带的设计与研究[D]. 天津: 天津工业大学, 2007. |
LI H T. Design and research of fully formed medical pressure bandages[D]. Tianjin: Tianjin Polytechnic University, 2007 (in Chinese). | |
[19] | 刘星辰, 谢红. 基于有限元建模技术的下肢着袜舒适性分析[J]. 上海纺织科技, 2021, 49(11): 18-21. |
LIU X C, XIE H. Analysis of the comfortability of lower limb socks based on finite element modeling technology[J]. Shanghai Textile Science & Technology, 2021, 49(11): 18-21 (in Chinese). |
[1] | XIA Hongmei, ZHEN Wenbin . Practice Training Method Study of Machine 3D Surveying and Mapping Based on Reverse Engineering [J]. Journal of Graphics, 2018, 39(5): 1004-1008. |
[2] | Bai Daiping, Li Yanqin, Ding Jing, Yang Yong, Fan Yue. The Point Cloud Simplification Technology of 3D Optical Measurement Applied on Reverse Engineering [J]. Journal of Graphics, 2014, 35(3): 402-407. |
[3] | Zhang Wei. Reconstruction of Triangle Mesh for Unorganized Point Cloud Data with Reconstruction of Triangle Mesh for Unorganized Point Cloud Data with [J]. Journal of Graphics, 2014, 35(2): 188-194. |
[4] | WU Xue-mei, WEN Jia, YU Guang-bin, LI Gui-xian, SHAN De-bin. Surface Reconstruction Based on Points Cloud Data from CMM [J]. Journal of Graphics, 2011, 32(2): 68-72. |
[5] | SHAO Zheng-wei, XI Ping. Data Reduction for Point Cloud Using Octree Coding [J]. Journal of Graphics, 2010, 31(4): 73-76. |
[6] | ZHAN Chang-qing, LIU Su. Reverse Modeling and Analysis of Automobile Engine Fan Blades [J]. Journal of Graphics, 2010, 31(1): 172-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||