Journal of Graphics ›› 2025, Vol. 46 ›› Issue (4): 847-854.DOI: 10.11996/JG.j.2095-302X.2025040847
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
GUO Linlin(
), YAO Min, ZHANG Wenqing, ZHANG Jia, SUN Jiande(
)
Received:2024-09-30
Revised:2025-05-29
Online:2025-08-30
Published:2025-08-11
Contact:
SUN Jiande
About author:First author contact:GUO Linlin (1988-), lecturer, Ph.D. Her main research interests cover intelligent wireless sensing technologies in the next-generation IT. E-mail:linlin_teresa@sdnu.edu.cn
Supported by:CLC Number:
GUO Linlin, YAO Min, ZHANG Wenqing, ZHANG Jia, SUN Jiande. Weighted respiration waveform reconstruction algorithm based on empirical modal decomposition[J]. Journal of Graphics, 2025, 46(4): 847-854.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025040847
| 文献 | 识别技术 | 年份 |
|---|---|---|
| 文献[ | Wi-Fi | 2021, 2022 |
| 文献[ | Wi-Fi | 2024 |
| 文献[ | Wi-Fi | 2024 |
| 文献[ | Wi-Fi | 2023 |
| 文献[ | Wi-Fi | 2022, 2024 |
| 文献[ | Acoustic | 2023 |
| 文献[ | Wi-Fi | 2018 |
| 文献[ | RF, Wi-Fi | 2015, 2017 2018 |
| 文献[ | Wi-Fi | 2016—2019, 2021, 2022 |
Table 1 Related works on respiration sensing
| 文献 | 识别技术 | 年份 |
|---|---|---|
| 文献[ | Wi-Fi | 2021, 2022 |
| 文献[ | Wi-Fi | 2024 |
| 文献[ | Wi-Fi | 2024 |
| 文献[ | Wi-Fi | 2023 |
| 文献[ | Wi-Fi | 2022, 2024 |
| 文献[ | Acoustic | 2023 |
| 文献[ | Wi-Fi | 2018 |
| 文献[ | RF, Wi-Fi | 2015, 2017 2018 |
| 文献[ | Wi-Fi | 2016—2019, 2021, 2022 |
Fig. 3 Raw CSI and CSI Ratio ((a) Raw CSI amplitude from the first antenna; (b) Raw CSI amplitude from the second antenna; (c) CSI Ratio: the rate and the first antenna and the second antenna)
| [1] | ZHANG F, WU C S, WANG B B, et al. SMARS: sleep monitoring via ambient radio signals[J]. IEEE Transactions on Mobile Computing, 2021, 20(1): 217-231. |
| [2] | ZENG X L, WANG B B, WU C S, et al. Intelligent Wi-Fi based child presence detection system[C]// 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2022: 11-15. |
| [3] | XIE X C, ZHANG D H, LI Y D, et al. Robust WiFi respiration sensing in the presence of interfering individual[J]. IEEE Transactions on Mobile Computing, 2024, 23(8): 8447-8462. |
| [4] | ZHANG Y W, HAN F Y, YANG P L, et al. Wi-Cyclops: room-scale WiFi sensing system for respiration detection based on single-antenna[J]. ACM Transactions on Sensor Networks, 2024, 20(4): 94. |
| [5] | LI B F, REN Y L, WANG Y C, et al. SpaceBeat: identity-aware multi-person vital signs monitoring using commodity WiFi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2024, 8(3): 113. |
| [6] | ZHANG S J, ZHENG T Y, WANG H B, et al. Quantifying the physical separability of RF-based multi-person respiration monitoring via SINR[C]// The 20th ACM Conference on Embedded Networked Sensor Systems. New York: ACM, 2022: 47-60. |
| [7] | HU J Y, JIANG H B, ZHENG T Y, et al. M2-Fi: multi-person respiration monitoring via handheld WiFi devices[C]// 2024 IEEE Conference on Computer Communications. New York: IEEE Press, 2024: 1221-1230. |
| [8] | WU Y, LI F, XIE Y D, et al. SymListener: detecting respiratory symptoms via acoustic sensing in driving environments[J]. ACM Transactions on Sensor Networks, 2023, 19(1): 3. |
| [9] | LIU J, WANG Y, CHEN Y Y, et al. Tracking vital signs during sleep leveraging off-the-shelf WiFi[C]// The 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM, 2015: 267-276. |
| [10] | LIU J, CHEN Y Y, WANG Y, et al. Monitoring vital signs and postures during sleep using WiFi signals[J]. IEEE Internet of Things Journal, 2018, 5(3): 2071-2084. |
| [11] | YUE S C, HE H, WANG H, et al. Extracting multi-person respiration from entangled RF signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(2): 86. |
| [12] | ADIB F, MAO H Z, KABELAC Z, et al. Smart homes that monitor breathing and heart rate[C]// The 33rd Annual ACM Conference on Human Factors in Computing Systems. New York: ACM, 2015: 837-846. |
| [13] | HSU C Y, AHUJA A, YUE S C, et al. Zero-effort in-home sleep and insomnia monitoring using radio signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 59. |
| [14] | WU D, ZENG Y W, ZHANG F S, et al. WiFi CSI-based device-free sensing: from Fresnel zone model to CSI-ratio model[J]. CCF Transactions on Pervasive Computing and Interaction, 2022, 4(1): 88-102. |
| [15] | YU B H, WANG Y X, NIU K, et al. WiFi-Sleep: sleep stage monitoring using commodity Wi-Fi devices[J]. IEEE Internet of Things Journal, 2021, 8(18): 13900-13913. |
| [16] | WANG H, ZHANG D Q, MA J Y, et al. Human respiration detection with commodity WiFi devices: do user location and body orientation matter?[C]// 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2016: 25-36. |
| [17] | ZENG Y W, WU D, GAO R Y, et al. FullBreathe: full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 148. |
| [18] | LI X, ZHANG D Q, XIONG J, et al. Training-free human vitality monitoring using commodity Wi-Fi devices[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 121. |
| [19] | ZHANG F S, ZHANG D Q, XIONG J, et al. From Fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(1): 53. |
| [20] | ZENG Y W, WU D, XIONG J, et al. FarSense: pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(3): 121. |
| [21] | 谢磊, 王楚豫, 宁静仪. 见微知著: 基于无线信号的微状态感知[J]. 中国计算机学会通讯, 2024, 20(3): 16-21. |
| XIE L, WANG C Y, NING J Y. Micro state sensing based on wireless signal[J]. Communications of the CCF, 2024, 20(3): 16-21 (in Chinese). | |
| [22] |
卢洋, 陈林慧, 姜晓恒, 等. SDENet: 基于多尺度注意力质量感知的合成缺陷数据评价网络[J]. 图学学报, 2025, 46(1): 94-103.
DOI |
|
LU Y, CHEN L H, JIANG Y H, et at. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception[J]. Journal of Graphics, 2025, 46(1): 94-103 (in Chinese).
DOI |
|
| [23] | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
| [24] |
王欣雨, 刘慧, 朱积成, 等. 基于高低频特征分解的深度多模态医学图像融合网络[J]. 图学学报, 2024, 45(1): 65-77.
DOI |
|
WANG X Y, LIU H, ZHU J C, et al. Deep multimodal medical image fusion network based on high-low frequency feature decomposition[J]. Journal of Graphics, 2024, 45(1): 65-77 (in Chinese).
DOI |
|
| [25] | KOMATY A, BOUDRAA A O, AUGIER B, et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 27-34. |
| [26] | AYENU-PRAH A, ATTOH-OKINE N. A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition[J]. Advances in Adaptive Data Analysis, 2010, 2(1): 1-24. |
| [1] | ZHAO Hui-chao, HU Kun, WANG Xiao-chao . Grayscale watermarking algorithm via BEMD and texture complexity [J]. Journal of Graphics, 2022, 43(4): 659-666. |
| [2] | MA Zengqiang, ZHANG Junjia, WANG mengqi, RUAN Wanying. Rolling Bearing Fault Diagnosis Based on Improved EEMD and Spectrum Kurtosis [J]. Journal of Graphics, 2017, 38(5): 663-669. |
| [3] | ZHANG Xiao-yu, DAI Fang, GAN Ming-hui, WANG Sai-fang. Image Stitching Based on Empirical Mode Decomposition [J]. Journal of Graphics, 2011, 32(1): 59-66. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||