Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1140-1148.DOI: 10.11996/JG.j.2095-302X.2023061140
Previous Articles Next Articles
FAN Teng(), YANG Hao, YIN Wen, ZHOU Dong-ming(
)
Received:
2023-06-27
Accepted:
2023-09-12
Online:
2023-12-31
Published:
2023-12-17
Contact:
ZHOU Dong-ming (1963-), professor, Ph.D. His main research interests cover image processing based on deep learning, biological information processing based on machine learning and compute vision, etc. E-mail:About author:
FAN Teng (1995-), master student. His main research interests cover computer graphics, image processing based on deep learning.
E-mail:fanteng@mail.ynu.edu.cn
Supported by:
CLC Number:
FAN Teng, YANG Hao, YIN Wen, ZHOU Dong-ming. Multi-scale view synthesis based on neural radiance field[J]. Journal of Graphics, 2023, 44(6): 1140-1148.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023061140
方法 | Transamerica (PSNR↑) | Transamerica (Avg) | |||||
---|---|---|---|---|---|---|---|
Stage Ⅰ | Stage Ⅱ | Stage Ⅲ | Stage Ⅳ | PSNR↑ | SSIM↑ | LPIPS↓ | |
NeRF[ | 22.71 | 22.81 | 22.97 | 21.58 | 22.64 | 0.69 | 0.59 |
MipNeRF[ | 23.25 | 23.37 | 22.70 | 21.56 | 20.22 | 0.46 | 0.60 |
BungeeNeRF[ | 23.36 | 23.37 | 23.11 | 23.57 | 22.61 | 0.67 | 0.46 |
Ours | 24.19 | 23.99 | 24.18 | 24.75 | 23.53 | 0.74 | 0.39 |
Table 1 Evaluation metrics comparisons between NeRF[5], MipNeRF[13], BungeeNeRF[14] and MS-NeRF
方法 | Transamerica (PSNR↑) | Transamerica (Avg) | |||||
---|---|---|---|---|---|---|---|
Stage Ⅰ | Stage Ⅱ | Stage Ⅲ | Stage Ⅳ | PSNR↑ | SSIM↑ | LPIPS↓ | |
NeRF[ | 22.71 | 22.81 | 22.97 | 21.58 | 22.64 | 0.69 | 0.59 |
MipNeRF[ | 23.25 | 23.37 | 22.70 | 21.56 | 20.22 | 0.46 | 0.60 |
BungeeNeRF[ | 23.36 | 23.37 | 23.11 | 23.57 | 22.61 | 0.67 | 0.46 |
Ours | 24.19 | 23.99 | 24.18 | 24.75 | 23.53 | 0.74 | 0.39 |
网络结构 | PSNR(Avg) ↑ | SSIM(Avg) ↑ | LPIPS(Avg) ↓ |
---|---|---|---|
NeRF[ | 28.99 | 0.86 | 0.18 |
MipNeRF[ | 28.26 | 0.80 | 0.20 |
BungeeNeRF[ | 28.78 | 0.84 | 0.18 |
MS-NeRF | 29.05 | 0.84 | 0.18 |
Table 2 Evaluation metrics on Blender Synthetic Ship
网络结构 | PSNR(Avg) ↑ | SSIM(Avg) ↑ | LPIPS(Avg) ↓ |
---|---|---|---|
NeRF[ | 28.99 | 0.86 | 0.18 |
MipNeRF[ | 28.26 | 0.80 | 0.20 |
BungeeNeRF[ | 28.78 | 0.84 | 0.18 |
MS-NeRF | 29.05 | 0.84 | 0.18 |
网络结构 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
NeRF[ | 11.79 | 0.58 | 0.39 |
NeRF(视图/残差块) | 19.84 | 0.81 | 0.21 |
BungeeNeRF[ | 22.61 | 0.66 | 0.45 |
BungeeNeRF(视图) | 23.54 | 0.74 | 0.39 |
Table 3 Evaluation metrics of using view features and residual blocks
网络结构 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
NeRF[ | 11.79 | 0.58 | 0.39 |
NeRF(视图/残差块) | 19.84 | 0.81 | 0.21 |
BungeeNeRF[ | 22.61 | 0.66 | 0.45 |
BungeeNeRF(视图) | 23.54 | 0.74 | 0.39 |
残差块数量 | Transamerica (PSNR↑) | |||
---|---|---|---|---|
StageⅠ | Stage Ⅱ | Stage Ⅲ | Stage Ⅳ | |
2 | 22.63 | 23.49 | 23.75 | 24.12 |
3 | 23.09 | 24.00 | 24.03 | 24.18 |
4 | 23.54 | 24.19 | 24.19 | 24.75 |
Table 4 Evaluation metrics of different number of residual blocks
残差块数量 | Transamerica (PSNR↑) | |||
---|---|---|---|---|
StageⅠ | Stage Ⅱ | Stage Ⅲ | Stage Ⅳ | |
2 | 22.63 | 23.49 | 23.75 | 24.12 |
3 | 23.09 | 24.00 | 24.03 | 24.18 |
4 | 23.54 | 24.19 | 24.19 | 24.75 |
[1] | SHUM H Y, HE L W. Rendering with concentric mosaics[C]// The 26th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1999: 299-306. |
[2] | DEBEVEC P, DOWNING G, BOLAS M, et al. Spherical light field environment capture for virtual reality using a motorized pan/tilt head and offset camera[EB/OL]. (2021-01-20) [2023-01-08]. http://dx.doc.org/10.1145/2787626.2787648. |
[3] | SZELISKI R, SHUM H Y. Creating full view panoramic image mosaics and environment maps[C]// The 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1997: 251-258. |
[4] | 常远, 盖孟. 基于神经辐射场的视点合成算法综述[J]. 图学学报, 2021, 42(3): 376-384. |
CHANG Y, GAI M. A review on neural radiance fields based view synthesis[J]. Journal of Graphics, 2021, 42(3): 376-384 (in Chinese). | |
[5] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]// European Conference on Computer Vision. Cham: Springer, 2020: 405-421. |
[6] | MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41(4): 1-15. |
[7] | REISER C, PENG S Y, LIAO Y Y, et al. KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 14315-14325. |
[8] | TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[EB/OL]. [2023-01-08]. https://arxiv.org/abs/2105.01601.pdf. |
[9] | GARBIN S J, KOWALSKI M, JOHNSON M, et al. FastNeRF: high-fidelity neural rendering at 200FPS[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 14326-14335. |
[10] | LIU L J, GU J T, LIN K Z, et al. Neural sparse voxel fields[EB/OL]. [2023-01-08]. https://arxiv.org/abs/2007.11571. |
[11] | YU A, LI R L, TANCIK M, et al. PlenOctrees for real-time rendering of neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 5732-5741. |
[12] | FRIDOVICH-KEIL S, YU A, TANCIK M, et al. Plenoxels: radiance fields without neural networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5491-5500. |
[13] | BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 5835-5844. |
[14] | XIANGLI Y B, XU L N, PAN X G, et al. BungeeNeRF: progressive neural radiance field for extreme multi-scale scene rendering[C]// European Conference on Computer Vision. Cham: Springer, 2022: 106-122. |
[15] | YU A, YE V, TANCIK M, et al. pixelNeRF: neural radiance fields from one or few images[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4576-4585. |
[16] |
GUARNERA D, GUARNERA G C, GHOSH A, et al. BRDF representation and acquisition[J]. Computer Graphics Forum, 2016, 35(2): 625-650.
DOI URL |
[17] |
ASMAIL C. Bidirectional scattering distribution function (BSDF): a systematized bibliography[J]. Journal of Research of the National Institute of Standards and Technology, 1991, 96(2): 215-223.
DOI PMID |
[18] | RIBARDIÈRE M, BRINGIER B, SIMONOT L, et al. Microfacet BSDFs generated from NDFs and explicit microgeometry[J]. ACM Transactions on Graphics, 2019, 38(5): 143. 1-143.15. |
[19] | WANG Q Q, WANG Z C, GENOVA K, et al. IBRNet: learning multi-view image-based rendering[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4688-4697. |
[20] | CHEN A P, XU Z X, ZHAO F Q, et al. MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 14104-14113. |
[21] | YAO Y, ZIXIN L, SHIWEI L, et al. MVSNet: depth inference for unstructured multi-view stereo[C]// IEEE/CVF Conference on International Conference on Computer Vision. New York: IEEE Press, 2018: 767-783. |
[22] | XU D J, JIANG Y F, WANG P H, et al. SinNeRF: training neural radiance fields on complex scenes from a single image[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2204.00928.pdf. |
[23] | HUANG B C, YI H W, HUANG C, et al. M3VSNET: unsupervised multi-metric multi-view stereo network[C]// 2021 IEEE International Conference on Image Processing. New York: IEEE Press, 2021: 3163-3167. |
[24] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2020-10-22) [2023-01-08]. https://arxiv.org/abs/2010.11929.pdf. |
[25] | XU L N, XIANGLI Y B, PENG S D, et al. Grid-guided neural radiance fields for large urban scenes[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 8296-8306. |
[26] | BARRON J T, MILDENHALL B, VERBIN D, et al. Zip-NeRF: anti-aliased grid-based neural radiance fields[EB/OL]. (2023-04-13) [2023-05-08]. https://arxiv.org/abs/2304.06706.pdf. |
[27] |
LIU P J, ZHANG H Z, LIAN W, et al. Multi-level wavelet convolutional neural networks[J]. IEEE Access, 2019, 7: 74973-74985.
DOI |
[28] | SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
[29] | KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2023-01-13]. https://arxiv.org/pdf/1412.6980.pdf. |
[30] | HORÉ A, ZIOU D. Image quality metrics:PSNR vs. SSIM[C]// 2010 20th International Conference on Pattern Recognition. New York: IEEE Press, 2010: 2366-2369. |
[31] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
DOI URL |
[32] | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 586-595. |
[1] | XIA Xiao-hua, LIU Xi-heng, YUE Peng-ju, ZOU Yi-qing, JIANG Li-jun. Detail-enhanced multi-exposure image fusion method [J]. Journal of Graphics, 2023, 44(6): 1130-1139. |
[2] | JIANG Wu-jun, ZHI Li-jia, ZHANG Shao-min, ZHOU Tao. CT image segmentation of lung nodules based on channel residual nested U structure [J]. Journal of Graphics, 2023, 44(5): 879-889. |
[3] | ZHANG Chen-yang, CAO Yan-hua, YANG Xiao-zhong. Multi-focus image fusion method based on fractional wavelet combined with guided filtering [J]. Journal of Graphics, 2023, 44(1): 77-87. |
[4] | CHANG Yuan, GAI Meng. A review on neural radiance fields based view synthesis [J]. Journal of Graphics, 2021, 42(3): 376-384. |
[5] | CHANG Dong-liang , YIN Jun-hui , XIE Ji-yang , SUN Wei-ya , MA Zhan-yu. Attention-guided Dropout for image classification [J]. Journal of Graphics, 2021, 42(1): 32-36. |
[6] | GU Yu-liang, YI Xu-ming . Adaptive weights image segmentation model based on wavelet transform [J]. Journal of Graphics, 2020, 41(5): 733-739. |
[7] | LIU Jianxin1, ZENG Qiang1, XU Ke2, WANG Yawei1 . Research on the Method of Tobacco Leaf Disease Spot Segmentation Based on Morphology and Wavelet Transform [J]. Journal of Graphics, 2018, 39(5): 933-938. |
[8] | JI Feng, LI Zeren, CHANG Xia, WU Zhiliang. Remote Sensing Image Fusion Method Based on PCA and NSCT Transform [J]. Journal of Graphics, 2017, 38(2): 247-252. |
[9] | Liu Xin, Che Xiangjiu, Lin Senqiao. Seismic Horizon Extraction Based on Dip Correction [J]. Journal of Graphics, 2015, 36(3): 418-424. |
[10] | Cui Hanguo, Liu Jianxin, Li Bin. Digital Watermarking Algorithm for Volume Data Based on DD-DT CWT and SIFT [J]. Journal of Graphics, 2015, 36(2): 148-151. |
[11] | Zhu Xiaolin, Li Xueyan, Xing Yan, Chen Man, Zhu Yuanzhu. Image Edge Detection Based on Wavelet and Singular Value Decomposition [J]. Journal of Graphics, 2014, 35(4): 563-570. |
[12] | Liu Jun, Ru Qingyun. Highly Adaptive Image Retrieval Technology Based on Fast Wavelet Transform [J]. Journal of Graphics, 2014, 35(2): 262-267. |
[13] | Wang Feng, Wan Zhiping. Wavelet Image Compression Algorithm Based on Threshold and Characteristics of Human Eye [J]. Journal of Graphics, 2013, 34(6): 80-86. |
[14] | Cai Nian, Zhang Haiyuan, Zhang Nan, Pan Qing. Using improved weighted parabolic interpolation and wavelet transformation to zoom images for super-resolution [J]. Journal of Graphics, 2012, 33(1): 50-55. |
[15] | Mao Anding, Guan Yihong, Duan Rui, Wang Yanhua, Lü Liang, Ji Yunhai. Image edge detection technology based on Daubechies wavelet [J]. Journal of Graphics, 2012, 33(1): 63-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||