Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1149-1161.DOI: 10.11996/JG.j.2095-302X.2023061149
Previous Articles Next Articles
LI Hong-xuan1,2(), ZHANG Song-yang3, REN Bo2,4(
)
Received:
2023-07-17
Accepted:
2023-09-05
Online:
2023-12-31
Published:
2023-12-17
Contact:
REN Bo (1987-), associate professor, Ph.D. His main research interests cover computer graphics, computer vision, etc. About author:
LI Hong-xuan (1999-), master student. Her main research interests cover image processing and computer vision.
E-mail:hxli@mail.nankai.edu.cn
Supported by:
CLC Number:
LI Hong-xuan, ZHANG Song-yang, REN Bo. High-capacity clipped robust image steganography based on multilevel invertible neural networks[J]. Journal of Graphics, 2023, 44(6): 1149-1161.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023061149
Fig. 2 Schematic diagram of the nested module cascading architecture CR-MISN based on reversible neural networks (The input consists of a carrier image and a large-sized secret image, which generates a visually consistent stego image. The output includes the recovered high-quality carrier image, secret image, and intermediate image)
方法(n倍容量) | 载密图像 | 秘密图像 | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
IICNet (n=2) | 36.78 | 0.945 | 0.002 2 | 43.02 | 0.992 | 0.002 30 |
ISN (n=2) | 36.84 | 0.948 | 0.003 5 | 33.53 | 0.934 | 0.018 70 |
CR-MISN (n=2) | 38.70 | 0.960 | 0.002 1 | 41.42 | 0.987 | 0.006 60 |
IICNet (n=3) | 35.16 | 0.923 | 0.008 6 | 36.22 | 0.965 | 0.014 10 |
ISN (n=3) | 34.59 | 0.918 | 0.007 1 | 29.63 | 0.867 | 0.052 10 |
CR-MISN (n=3) | 36.61 | 0.926 | 0.005 3 | 36.37 | 0.968 | 0.012 80 |
IICNet (n=5) | 27.95 | 0.747 | 0.010 1 | 34.09 | 0.941 | 0.034 50 |
ISN (n=5) | 31.98 | 0.887 | 0.031 5 | 29.63 | 0.867 | 0.149 40 |
CR-MISN (n=5) | 34.30 | 0.921 | 0.008 1 | 32.26 | 0.935 | 0.040 30 |
IICNet (n=7) | 25.87 | 0.725 | 0.172 5 | 31.55 | 0.905 | 0.087 84 |
ISN (n=7) | 30.36 | 0.862 | 0.097 5 | 26.72 | 0.797 | 0.299 54 |
CR-MISN (n=7) | 32.64 | 0.917 | 0.028 9 | 30.27 | 0.902 | 0.077 89 |
Table 1 Comparison of PSNR, SSIM, LPIPS metrics for stego images and recovered images with n times payload capacity on the DIV2K[26] and Flickr2K[27] datasets
方法(n倍容量) | 载密图像 | 秘密图像 | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
IICNet (n=2) | 36.78 | 0.945 | 0.002 2 | 43.02 | 0.992 | 0.002 30 |
ISN (n=2) | 36.84 | 0.948 | 0.003 5 | 33.53 | 0.934 | 0.018 70 |
CR-MISN (n=2) | 38.70 | 0.960 | 0.002 1 | 41.42 | 0.987 | 0.006 60 |
IICNet (n=3) | 35.16 | 0.923 | 0.008 6 | 36.22 | 0.965 | 0.014 10 |
ISN (n=3) | 34.59 | 0.918 | 0.007 1 | 29.63 | 0.867 | 0.052 10 |
CR-MISN (n=3) | 36.61 | 0.926 | 0.005 3 | 36.37 | 0.968 | 0.012 80 |
IICNet (n=5) | 27.95 | 0.747 | 0.010 1 | 34.09 | 0.941 | 0.034 50 |
ISN (n=5) | 31.98 | 0.887 | 0.031 5 | 29.63 | 0.867 | 0.149 40 |
CR-MISN (n=5) | 34.30 | 0.921 | 0.008 1 | 32.26 | 0.935 | 0.040 30 |
IICNet (n=7) | 25.87 | 0.725 | 0.172 5 | 31.55 | 0.905 | 0.087 84 |
ISN (n=7) | 30.36 | 0.862 | 0.097 5 | 26.72 | 0.797 | 0.299 54 |
CR-MISN (n=7) | 32.64 | 0.917 | 0.028 9 | 30.27 | 0.902 | 0.077 89 |
Fig. 5 Visual comparison of carrier images with 2x, 3x payload capacity and recovered secret images ((a) Experimental results of 2 times load capacity; (b) Experimental results of 3 times load capacity)
Fig. 6 Visual comparison of carrier images with 5x, 7x payload capacity and recovered secret images ((a) Experimental results of 5 times load capacity; (b) Experimental results of 7 times load capacity)
区域缺失比例(α) | PSNR | SSIM | LPIPS |
---|---|---|---|
IICNet (α= 20%) | 15.363 | 0.318 | 0.272 |
ISN (α= 20%) | 15.449 | 0.264 | 0.413 |
CR-MISN (α= 20%) | 29.539 | 0.921 | 0.047 |
IICNet (α= 40%) | 13.953 | 0.288 | 0.406 |
ISN (α= 40%) | 14.027 | 0.246 | 0.499 |
CR-MISN (α= 40%) | 29.367 | 0.920 | 0.048 |
IICNet (α= 60%) | 13.096 | 0.264 | 0.497 |
ISN (α= 60%) | 13.210 | 0.228 | 0.557 |
CR-MISN (α= 60%) | 27.763 | 0.911 | 0.058 |
Table 2 Comparison of metrics for recovered secret images from steganographic images with different proportions of cropping attacks on DIV2K[26] and Flickr2K[27] datasets
区域缺失比例(α) | PSNR | SSIM | LPIPS |
---|---|---|---|
IICNet (α= 20%) | 15.363 | 0.318 | 0.272 |
ISN (α= 20%) | 15.449 | 0.264 | 0.413 |
CR-MISN (α= 20%) | 29.539 | 0.921 | 0.047 |
IICNet (α= 40%) | 13.953 | 0.288 | 0.406 |
ISN (α= 40%) | 14.027 | 0.246 | 0.499 |
CR-MISN (α= 40%) | 29.367 | 0.920 | 0.048 |
IICNet (α= 60%) | 13.096 | 0.264 | 0.497 |
ISN (α= 60%) | 13.210 | 0.228 | 0.557 |
CR-MISN (α= 60%) | 27.763 | 0.911 | 0.058 |
损失权重(λS) | 载密图像 | 秘密图像 | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
λS= 16.0 | 26.78 | 0.804 | 0.172 9 | 33.57 | 0.949 | 0.021 8 |
λS= 32.0 | 28.51 | 0.861 | 0.135 1 | 32.97 | 0.943 | 0.028 9 |
λS= 70.0 | 34.30 | 0.921 | 0.008 1 | 32.26 | 0.935 | 0.040 3 |
Table 3 Comparison of metrics for ablation experiments based on loss weights of steganographic images on DIV2K[26] and Flickr2K[27] datasets
损失权重(λS) | 载密图像 | 秘密图像 | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
λS= 16.0 | 26.78 | 0.804 | 0.172 9 | 33.57 | 0.949 | 0.021 8 |
λS= 32.0 | 28.51 | 0.861 | 0.135 1 | 32.97 | 0.943 | 0.028 9 |
λS= 70.0 | 34.30 | 0.921 | 0.008 1 | 32.26 | 0.935 | 0.040 3 |
Fig. 9 Visual comparison of steganographic images and recovered secret images with different loss function weights or different block proportion coefficients ((a) Loss weight ablation results of dense image; (b) Block ratio coefficient ablation results)
损失权重(Kb) | 载密图像 | 秘密图像 | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
Kb= 6 | 32.75 | 0.891 | 0.033 9 | 31.07 | 0.908 | 0.067 2 |
Kb= 12 | 33.36 | 0.916 | 0.027 1 | 31.13 | 0.912 | 0.059 8 |
Kb= 72 | 34.30 | 0.921 | 0.008 1 | 32.26 | 0.935 | 0.040 3 |
Table 4 Comparison of metrics for ablation experiments based on block proportion coefficients on DIV2K[26] and Flickr2K[27] datasets
损失权重(Kb) | 载密图像 | 秘密图像 | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
Kb= 6 | 32.75 | 0.891 | 0.033 9 | 31.07 | 0.908 | 0.067 2 |
Kb= 12 | 33.36 | 0.916 | 0.027 1 | 31.13 | 0.912 | 0.059 8 |
Kb= 72 | 34.30 | 0.921 | 0.008 1 | 32.26 | 0.935 | 0.040 3 |
[1] | PROVOS N, HONEYMAN P. Hide and seek: an introduction to steganography[J]. IEEE Security & Privacy, 2003, 1(3): 32-44. |
[2] | 葛秀慧, 胡爱华, 田浩, 等. 隐写术的研究与应用[J]. 计算机应用与软件, 2007, 24(11): 57-60. |
GE X H, HU A H, TIAN H, et al. The research and application of steganography[J]. Computer Applications and Software, 2007, 24(11): 57-60 (in Chinese). | |
[3] | KESSLER G. An overview of cryptographic methods[EB/OL]. [2023-01-12]. https://www.google.com/books?hl=zh-CN&lr=&id=0xEIEAAAQBAJ&oi=fnd&pg=PA73&dq=An+overview+of+cryptographic+methods&ots=1OcJjqLhcz&sig=Pgf1Y_Tl5_Gy5aJalbT3pmNCsjU. |
[4] | 郑东, 赵庆兰, 张应辉. 密码学综述[J]. 西安邮电大学学报, 2013, 18(6): 1-10. |
ZHENG D, ZHAO Q L, ZHANG Y H. A brief overview on cryptography[J]. Journal of Xi'an University of Posts and Telecommunications, 2013, 18(6): 1-10 (in Chinese). | |
[5] |
CHEDDAD A, CONDELL J, CURRAN K, et al. Digital image steganography: survey and analysis of current methods[J]. Signal Processing, 2010, 90(3): 727-752.
DOI URL |
[6] | 付章杰, 王帆, 孙星明, 等. 基于深度学习的图像隐写方法研究[J]. 计算机学报, 2020, 43(9): 1656-1672. |
FU Z J, WANG F, SUN X M, et al. Research on steganography of digital images based on deep learning[J]. Chinese Journal of Computers, 2020, 43(9): 1656-1672 (in Chinese). | |
[7] | 顾霞. 网络通信数据中的隐写技术研究[D]. 南京: 南京理工大学, 2006. |
GU X. Research on steganography techniques in network communication data[D]. Nanjing: Nanjing University of Science and Technology, 2006 (in Chinese). | |
[8] | SIVA SANKAR A, PRASAD T J, GIRIPRASAD M N. LSB based image steganography using polynomials and covert communications in open systems environment for DRM[C]// Proceedings of the International Conference & Workshop on Emerging Trends in Technology. New York: ACM, 2011: 593-597. |
[9] | PRADHAN A, SAHU A K, SWAIN G, et al. Performance evaluation parameters of image steganography techniques[C]// 2016 International Conference on Research Advances in Integrated Navigation Systems. New York: IEEE Press, 2016: 1-8. |
[10] | 梁小萍, 何军辉, 李健乾, 等. 隐写分析: 原理、现状与展望[J]. 中山大学学报: 自然科学版, 2004, 43(6): 93-96. |
LIANG X P, HE J H, LI J Q, et al. Steganalysis—principle, actuality and prospect[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(6): 93-96 (in Chinese). | |
[11] | 王朔中, 张新鹏, 张卫明. 以数字图像为载体的隐写分析研究进展[J]. 计算机学报, 2009, 32(7): 1247-1263. |
WANG S Z, ZHANG X P, ZHANG W M. Recent advances in image-based steganalysis research[J]. Chinese Journal of Computers, 2009, 32(7): 1247-1263 (in Chinese).
DOI URL |
|
[12] | SHARDA S, BUDHIRAJA S. Image steganography: a review[J]. International Journal of Emerging Technology and Advanced Engineering, 2013, 3(1): 707-710. |
[13] |
CHAN C K, CHENG L M. Hiding data in images by simple LSB substitution[J]. Pattern Recognition, 2004, 37(3): 469-474.
DOI URL |
[14] | YANG H F, SUN X M, SUN G. A high-capacity image data hiding scheme using adaptive LSB substitution[J]. Radioengineering, 2009, 18(4): 509-516. |
[15] | BALUJA S. Hiding images in plain sight: deep steganography[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 2066-2076. |
[16] | ZHU J R, KAPLAN R, JOHNSON J, et al. HiDDeN: hiding data with deep networks[C]// European Conference on Computer Vision. Cham: Springer, 2018: 682-697. |
[17] |
BALUJA S. Hiding images within images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7): 1685-1697.
DOI PMID |
[18] | LU S P, WANG R, ZHONG T, et al. Large-capacity image steganography based on invertible neural networks[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10811-10820. |
[19] | CHENG K L, XIE Y Q, CHEN Q F. IICNet: a generic framework for reversible image conversion[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 1971-1980. |
[20] |
GUAN Z Y, JING J P, DENG X, et al. DeepMIH: deep invertible network for multiple image hiding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 372-390.
DOI URL |
[21] | XU Y M, MOU C, HU Y J, et al. Robust invertible image steganography[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 7865-7874. |
[22] | DINH L, KRUEGER D, BENGIO Y. NICE: non-linear independent components estimation[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1410.8516. |
[23] | DINH L, SOHL-DICKSTEIN J, BENGIO S. Density estimation using RealNVP[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1605.08803. |
[24] | KINGMA D P, DHARIWAL P. Glow: generative flow with invertible 1x1 convolutions[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1807.03039. |
[25] | XIAO M Q, ZHENG S X, LIU C, et al. Invertible image rescaling[C]// European Conference on Computer Vision. Cham: Springer, 2020: 126-144. |
[26] | AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1122-1131. |
[27] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1132-1140. |
[28] | NEETA D, SNEHAL K, JACOBS D. Implementation of LSB steganography and its evaluation for various bits[C]// 2006 1st International Conference on Digital Information Management. New York: IEEE Press, 2007: 173-178. |
[29] | PAN F, LI J, YANG X Y. Image steganography method based on PVD and modulus function[C]// 2011 International Conference on Electronics, Communications and Control. New York: IEEE Press, 2011: 282-284. |
[30] | NGUYEN B C, YOON S M, LEE H K. Multi bit plane image steganography[M]// Digital Watermarking. Heidelberg: Springer, 2006: 61-70. |
[31] |
PAN Z, HU S, MA X, et al. Reversible data hiding based on local histogram shifting with multilayer embedding[J]. Journal of Visual Communication and Image Representation, 2015, 31: 64-74.
DOI URL |
[32] | IMAIZUMI S, OZAWA K. Multibit embedding algorithm for steganography of palette-based images[C]// Pacific-Rim Symposium on Image and Video Technology. Heidelberg: Springer, 2014: 99-110. |
[33] | PO-YUEH P Y, LIN H J. A DWT based approach for image steganography[J]. International Journal of Applied Science and Engineering, 2006, 4(3): 275-290. |
[34] | KAUR B, KAUR A, SINGH J. Steganographic approach for hiding image in DCT domain[J]. International Journal of Advances in Engineering & Technology, 2011, 1(3): 72. |
[35] | LIAO X, YIN J J, CHEN M L, et al. Adaptive payload distribution in multiple images steganography based on image texture features[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(2): 897-911. |
[36] |
ROY R, SARKAR A, CHANGDER S. Chaos based edge adaptive image steganography[J]. Procedia Technology, 2013, 10: 138-146.
DOI URL |
[37] |
YANG J H, RUAN D Y, HUANG J W, et al. An embedding cost learning framework using GAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 839-851.
DOI URL |
[38] |
TANG W X, LI B, TAN S Q, et al. CNN-based adversarial embedding for image steganography[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(8): 2074-2087.
DOI URL |
[39] | ZHU J R, KAPLAN R, JOHNSON J, et al. HiDDeN: hiding data with deep networks[C]// European Conference on Computer Vision. Cham: Springer, 2018: 682-697. |
[40] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
DOI URL |
[41] | JING J P, DENG X, XU M, et al. HiNet: deep image hiding by invertible network[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 4713-4722. |
[42] | ARDIZZONE L, LÜTH C, KRUSE J, et al. Guided image generation with conditional invertible neural networks[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1907.02392. |
[43] | VAN DER OUDERAA T F A, WORRALL D E. Reversible GANs for memory-efficient image-to-image translation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 4715-4723. |
[44] |
ZHU X B, LI Z Z, ZHANG X Y, et al. Residual invertible spatio-temporal network for video super-resolution[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5981-5988.
DOI URL |
[45] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2261-2269. |
[46] | PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1912.01703. |
[47] | KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1412.6980. |
[48] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
DOI URL |
[49] | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 586-595. |
[1] |
WANG Jiang’an, HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian.
Dense point cloud reconstruction network based on adaptive aggregation recurrent recursion
[J]. Journal of Graphics, 2024, 45(1): 230-239.
|
[2] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[3] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[4] | WANG Jiang-an, PANG Da-wei, HUANG Le, QING Lin-zhen. Dense point cloud reconstruction network using multi-scale feature recursive convolution [J]. Journal of Graphics, 2022, 43(5): 875-883. |
[5] | LIANG Zhen-yu, HUA Jia-hao, CHEN Hao-long, DENG Yi-chuan. A computer vision based structural damage identification method for temporary structure during construction [J]. Journal of Graphics, 2022, 43(4): 608-615. |
[6] | XIONG Chen, CHEN Li-bin, LI Lin-ze, XU Zhen, ZHAO Yang-ping. Crack visualization management method based on computer vision and BIM [J]. Journal of Graphics, 2022, 43(4): 721-728. |
[7] | GAO Ming, ZHANG He-hua, ZHANG Ting-rui, ZHANG Xuan-ming. Deep learning based pixel-level public architectural floor plan space recognition [J]. Journal of Graphics, 2022, 43(2): 189-196. |
[8] | DUAN Rui, DENG Hui, DENG Yi-chuan . Information communications technology assisted tower crane safety management-review and prospect [J]. Journal of Graphics, 2022, 43(1): 11-20. |
[9] | ZHANG Yu-hang , SU Cheng, DENG Yi-chuan, . A eulerian video magnification based cable tension identification method for bridge structures [J]. Journal of Graphics, 2021, 42(6): 941-947. |
[10] | GAO Wen-ting , LIU Yue. Review of real-time deep learning-based object detection for mobile augmented reality [J]. Journal of Graphics, 2021, 42(4): 525-534. |
[11] | HUANG Kai-qi, ZHAO Xin , LI Qiao-zhe , HU Shi-yu. Visual Turing: the next development of computer vision in the view of human-computer gaming [J]. Journal of Graphics, 2021, 42(3): 339-348. |
[12] | SHA Hao , LIU Yue . Review on deep learning based prediction of image intrinsic properties [J]. Journal of Graphics, 2021, 42(3): 385-397. |
[13] | YAO Han, YIN Xue-feng, LI Tong, ZHANG Zhao-xuan, YANG Xin, YIN Bao-cai . Research on depth prediction algorithm based on multi-task model [J]. Journal of Graphics, 2021, 42(3): 446-453. |
[14] | LIU Chang, XU Chao-yuan, ZHANG Xin, XUE Lei. A combined classifier based on CNN and SVM for LCD character recognition [J]. Journal of Graphics, 2021, 42(1): 15-22. |
[15] | CHEN Yan, YANG Li-li, WANG Zhen-peng. Literature survey on stereo vision matching algorithms [J]. Journal of Graphics, 2020, 41(5): 702-708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||