Journal of Graphics ›› 2024, Vol. 45 ›› Issue (2): 388-398.DOI: 10.11996/JG.j.2095-302X.2024020388
• Digital Design and Manufacture Special • Previous Articles Next Articles
Received:
2023-10-01
Revised:
2023-12-11
Online:
2024-04-30
Published:
2024-04-30
Contact:
XU Ke (1989-), associate professor, Ph.D. His main research interests cover digital and intelligent manufacturing. E-mail:nuaa_xk@nuaa.edu.cn
About author:
WANG Shixin (1999-), master student. His main research interests cover manufacturing process optimization of composite materials. E-mail:wsx051730404@nuaa.edu.cn
Supported by:
CLC Number:
WANG Shixin, XU Ke. Dynamic estimation of heat source distribution during solidification of composite materials under sparse monitoring samples[J]. Journal of Graphics, 2024, 45(2): 388-398.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024020388
Fig. 4 Common interpolation methods ((a) Nearest neighbor interpolation; (b) Linear interpolation; (c) Natural neighbor interpolation; (d) Biharmonic spline interpolation)
Fig. 5 Validation of GMM reconstruction algorithm ((a) Original temperature difference data; (b) Fitting GMM surfaces; (c) The corresponding value of the sampling point on the fitted surface)
Fig. 8 A Simulation verification and preset heat source distribution based on COMSOL ((a) Simulation heating device; (b) Grayscale image of boundary heat source; (c) Simulated heat source distribution; (d) CFRP surface temperature field)
Fig. 10 Reconstruction of heat source distribution ((a) Temperature field distribution at 1 000 s; (b) Temperature field at 1 100 s as predicted; (c) Surfaces fitted by temperature difference; (d) Heat source distribution for final reconstruction)
Fig. 14 Comparison of reconstruction results ((a) Linear interpolation; (b) Biharmonic spline interpolation; (c) ART iterative reconstruction; (d) GMM-based reconstruction)
重建方法 | SSIM | PSNR | Corr2 |
---|---|---|---|
线性插值 | 0.34 | 10.94 | 0.49 |
双调和样条插值 | 0.36 | 10.67 | 0.72 |
ART算法[ | 0.32 | 9.23 | 0.59 |
本文算法 | 0.43 | 15.18 | 0.85 |
Table 1 Comparison of reconstruction error
重建方法 | SSIM | PSNR | Corr2 |
---|---|---|---|
线性插值 | 0.34 | 10.94 | 0.49 |
双调和样条插值 | 0.36 | 10.67 | 0.72 |
ART算法[ | 0.32 | 9.23 | 0.59 |
本文算法 | 0.43 | 15.18 | 0.85 |
Fig. 16 Reconstruction results of heat source distribution in Case2 ((a) Preset heat source distribution; (b) Reconstructed heat source distribution; (c) Residual)
Fig. 17 Reconstruction results of heat source distribution in Case3 ((a) Preset heat source distribution; (b) Reconstructed heat source distribution; (c) Residual)
Fig. 18 The effectiveness of this method is verified ((a) Reconstruction of heat source distribution; (b) Prediction of the temperature field at 800 s; (c) COMSOL simulation of 800 s temperature field)
[1] |
ALAM P, MAMALIS D, ROBERT C, et al. The fatigue of carbon fibre reinforced plastics-a review[J]. Composites Part B: Engineering, 2019, 166: 555-579.
DOI URL |
[2] | 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7): 1327-1338. |
XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1327-1338 (in Chinese). | |
[3] | 何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料, 2011, 28(2): 7-13. |
HE Y F, JIAO W C, YANG F, et al. The development of polymer composites forming process[J]. Fiber Composites, 2011, 28(2): 7-13 (in Chinese). | |
[4] |
LOOS A C, SPRINGER G S. Curing of epoxy matrix composites[J]. Journal of Composite Materials, 1983, 17(2): 135-169.
DOI URL |
[5] |
ABLIZ D, DUAN Y G, STEUERNAGEL L, et al. Curing methods for advanced polymer composites-a review[J]. Polymers and Polymer Composites, 2013, 21(6): 341-348.
DOI URL |
[6] |
KIM M, SUNG D H, KONG K, et al. Characterization of resistive heating and thermoelectric behavior of discontinuous carbon fiber-epoxy composites[J]. Composites Part B: Engineering, 2016, 90: 37-44.
DOI URL |
[7] |
LI N Y, LI Y G, JELONNEK J, et al. A new process control method for microwave curing of carbon fibre reinforced composites in aerospace applications[J]. Composites Part B: Engineering, 2017, 122: 61-70.
DOI URL |
[8] |
CHEKANOV Y A, KOROTKOV V N, ROZENBERG B A, et al. Cure shrinkage defects in epoxy resins[J]. Polymer, 1995, 36(10): 2013-2017.
DOI URL |
[9] |
JINNO M, SAKAI S, OSAKA K, et al. Smart autoclave processing of thermoset resin matrix composites based on temperature and internal strain monitoring[J]. Advanced Composite Materials, 2003, 12(1): 57-72.
DOI URL |
[10] |
HSIAO K T, LITTLE R, RESTREPO O, et al. A study of direct cure kinetics characterization during liquid composite molding[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(6): 925-933.
DOI URL |
[11] |
NASH C, KARVE P, ADAMS D, et al. Real-time cure monitoring of fiber-reinforced polymer composites using infrared thermography and recursive Bayesian filtering[J]. Composites Part B: Engineering, 2020, 198: 108241.
DOI URL |
[12] |
HADDAD H, GUESSASMA M, FORTIN J. Heat transfer by conduction using DEM-FEM coupling method[J]. Computational Materials Science, 2014, 81: 339-347.
DOI URL |
[13] |
TAMADDON-JAHROMI H R, CHAKSHU N K, SAZONOV I, et al. Data-driven inverse modelling through neural network (deep learning) and computational heat transfer[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113217.
DOI URL |
[14] |
HE Z L, NI F T, WANG W G, et al. A physics-informed deep learning method for solving direct and inverse heat conduction problems of materials[J]. Materials Today Communications, 2021, 28: 102719.
DOI URL |
[15] |
ZOBEIRY N, HUMFELD K D. A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104232.
DOI URL |
[16] |
WANG M Y, HU W F, JIANG Y F, et al. Internal temperature prediction of ternary polymer lithium-ion battery pack based on CNN and virtual thermal sensor technology[J]. International Journal of Energy Research, 2021, 45(9): 13681-13691.
DOI URL |
[17] |
张立峰, 李晶. 基于级联密集残差网络的温度场高分辨率重建[J]. 图学学报, 2023, 44(2): 216-224.
DOI |
ZHANG L F, LI J. High resolution reconstruction of temperature field based on cascaded dense residual network[J]. Journal of Graphics, 2023, 44(2): 216-224 (in Chinese). | |
[18] |
BOURGEOIS L. A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation[J]. Inverse Problems, 2005, 21(3): 1087-1104.
DOI URL |
[19] |
HÀO D N, LESNIC D. The Cauchy problem for Laplace’s equation via the conjugate gradient method[J]. IMA Journal of Applied Mathematics, 2000, 65(2): 199-217.
DOI URL |
[20] | ANG D D, NGHIA N H, TAM N C. Regularized solutions of a Cauchy problem for the Laplace equation in an irregular layer: a three-dimensional model[J]. Acta Math Vietnam, 1998, 23(1): 65-74. |
[21] |
LI M, XIONG X T. On a fractional backward heat conduction problem: application to deblurring[J]. Computers & Mathematics With Applications, 2012, 64(8): 2594-2602.
DOI URL |
[22] | 程炜, 侯长顺, 傅初黎. 反向热传导问题的一种新的正则化方法[J]. 数学的实践与认识, 2011, 41(4): 164-170. |
CHENG W, HOU C S, FU C L. A new regularization method for a backward heat conduction problem[J]. Mathematics in Practice and Theory, 2011, 41(4): 164-170 (in Chinese). | |
[23] | 侯佳琪, 熊向团. 二维时间反向热传导问题的正则化方法及误差估计[J]. 四川师范大学学报: 自然科学版, 2023, 46(4): 497-502. |
HOU J Q, XIONG X T. The regularization methods for solving the time-inverse heat conduction problems in two dimensions and error estimation[J]. Journal of Sichuan Normal University: Natural Science, 2023, 46(4): 497-502 (in Chinese). | |
[24] | 李地科, 刘忠信, 邱璐, 等. 基于迁移学习和物理约束的温度场重构方法[J]. 工程热物理学报, 2023, 44(4): 1088-1095. |
LI D K, LIU Z X, QIU L, et al. Transfer learning and physics-informed neural network for temperature field reconstruction[J]. Journal of Engineering Thermophysics, 2023, 44(4): 1088-1095 (in Chinese). | |
[25] |
FISH V, AKIYAMA K, BOUMAN K, et al. Observing—and imaging—active galactic nuclei with the event horizon telescope[J]. Galaxies, 2016, 4(4): 54.
DOI URL |
[26] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
DOI URL |
[27] |
ZHANG S P, SHEN G Q, AN L S, et al. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography[J]. Applied Thermal Engineering, 2015, 75: 958-966.
DOI URL |
[1] | LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception [J]. Journal of Graphics, 2024, 45(2): 250-258. |
[2] | ZHU Yiming, ZHANG Yuzhu, CHEN Bin, PENG Xiaodong, GAO Chen, LIU Yu, TANG Wenlin, QIANG Li’e, XU Peng, LUO Ziren. Space gravitational wave detection parameter management and performance analysis based on MBSE [J]. Journal of Graphics, 2024, 45(2): 259-267. |
[3] | SU Hu, FANG Shizhe, TIAN Kunxiao, GONG Chunlin. Conceptual design of surface-to-air missile based on MBSE [J]. Journal of Graphics, 2024, 45(2): 268-276. |
[4] | ZHANG Ran, LI Yuan, WANG Hao, SUN Zhaoqiang, ZHAO Yuanyuan. Research on scenario-oriented radar system model design and simulation [J]. Journal of Graphics, 2024, 45(2): 284-291. |
[5] | HE Wenhu, LIU Wei, WANG Youlong, CAI Hui. Research on modeling method of top-level function decomposition and allocation for aviation power equipment [J]. Journal of Graphics, 2024, 45(2): 292-299. |
[6] | HE Liu, AN Ran, LIU Shuyan, LI Runqi, TAO Jian, ZENG Zhaoyang. Research on knowledge graph-based aviation multi-modal data organization and discovery method [J]. Journal of Graphics, 2024, 45(2): 300-307. |
[7] | WANG Hao, WU Zhongzhi, TANG Jian. Automated testing study for civil aircraft requirements’ verification [J]. Journal of Graphics, 2024, 45(2): 308-316. |
[8] | HUANG Tingli, WANG Baomin, WANG Haifang, ZHAO Jiahao, ZHOU Lujie, GUAN Lin. Design and modeling method of IPIS system for subway trains [J]. Journal of Graphics, 2024, 45(2): 317-324. |
[9] | PANG Bo, YANG Hui, YU Rongrong, ZHANG Haoyue, LUO Qiang. Research on spacecraft mechanisms production line balance based on digital twin technology [J]. Journal of Graphics, 2024, 45(2): 332-338. |
[10] | WANG Haifang, ZHANG Lei, LIU Huijun, LU Yiming, SUN Minghui. A DoDAF-based method for developing MBSE for EMU [J]. Journal of Graphics, 2024, 45(2): 339-346. |
[11] | WANG Haifang, ZHANG Lei, WANG Xin, SUN Minghui, XUE Lianmin. Modeling and implementation of EMU traction system based on top down design [J]. Journal of Graphics, 2024, 45(2): 347-354. |
[12] | MA Yanli, ZHANG Jizhong, HAO Jibin, LIANG Wei, LI Xiuchun. Modeling method for design of diesel engine system based on MBSE [J]. Journal of Graphics, 2024, 45(2): 355-362. |
[13] | LU Yuanjie, CHEN Xingyi, SU Dalin, SUN Wei. Research on UAV autonomous positioning system for system engineering [J]. Journal of Graphics, 2024, 45(2): 363-368. |
[14] | LIU Meng, GENG Shizhan, DING Guohui. Research on rule-based method for automatic generation of SysML use cases [J]. Journal of Graphics, 2024, 45(2): 374-382. |
[15] | ZHANG Yiming, LIU Jinfeng, CHEN Yajie, QU Pengfei, JING Xuwen, LIU Xiaojun. Tacit process knowledge acquisition methods for the parts machining [J]. Journal of Graphics, 2024, 45(2): 399-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||