Journal of Graphics ›› 2024, Vol. 45 ›› Issue (2): 250-258.DOI: 10.11996/JG.j.2095-302X.2024020250
• Digital Design and Manufacture Special • Previous Articles Next Articles
LU Longfei(), WANG Junfeng(
), ZHAO Shiwen, LI Guang, DING Xintao
Received:
2024-01-05
Revised:
2024-01-26
Online:
2024-04-30
Published:
2024-04-29
Contact:
WANG Junfeng (1970-), professor, Ph.D. His main research interests cover digital and intelligent assembly, robot-human interaction and collaboration, etc. E-mail:wangjf@hust.edu.cn
About author:
LU Longfei (2000-), master student. His main research interest covers robot assembly. E-mail:llf13673586024@163.com
Supported by:
CLC Number:
LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception[J]. Journal of Graphics, 2024, 45(2): 250-258.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024020250
Fig. 10 Assembly process status ((a) Peg approaches hole; (b) Peg contacts hole; (c) Posture adjustment; (d) Position adjustment; (e) Peg and hole alignment; (f) Peg inserts hole)
装配策略 | 装配 成功率/% | 平均 时间/s | 平均最大 接触力/N |
---|---|---|---|
几何模型[ | 91 | 26.4 | 12.47 |
SVM[ | 86 | 17.8 | 21.62 |
GMR[ | 84 | 16.9 | 14.56 |
本文方法 | 94 | 15.1 | 16.35 |
Table 1 Experimental results of peg-in-hole assembly under different strategies
装配策略 | 装配 成功率/% | 平均 时间/s | 平均最大 接触力/N |
---|---|---|---|
几何模型[ | 91 | 26.4 | 12.47 |
SVM[ | 86 | 17.8 | 21.62 |
GMR[ | 84 | 16.9 | 14.56 |
本文方法 | 94 | 15.1 | 16.35 |
[1] |
WANG S, CHEN G D, XU H, et al. A robotic peg-in-hole assembly strategy based on variable compliance center[J]. IEEE Access, 1809, 7: 167534-167546.
DOI URL |
[2] | JIN S Y, ZHU X H, WANG C H, et al. Contact pose identification for peg-in-hole assembly under uncertainties[C]// 2021 American Control Conference. New York: IEEE Press, 2021: 48-53. |
[3] | ZOU P, ZHU Q G, WU J, et al. An approach for peg-in-hole assembling based on force feedback control[C]// 2019 Chinese Automation Congress. New York: IEEE Press, 2019: 3269-3273. |
[4] | 甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34(10): 2134-2142. |
GAN Y H, DUAN J J, DAI X Z. Adaptive variable impedance control for robot force tracking in unstructured environment[J]. Control and Decision, 2019, 34(10): 2134-2142 (in Chinese). | |
[5] |
LIU Z, SONG L B, HOU Z M, et al. Screw insertion method in peg-in-hole assembly for axial friction reduction[J]. IEEE Access, 2019, 7: 148313-148325.
DOI URL |
[6] |
HUANG H B, CHENG H K, WANG T T, et al. Hole-finding learning strategy for a robot assembly with keyed circular peg[J]. IEEE Access, 2023, 11: 21488-21497.
DOI URL |
[7] |
罗威, 李明富, 赵文权, 等. 基于力-位图像学习的工业机器人柔顺装配方法研究[J]. 机械工程学报, 2022, 58(21): 69-77.
DOI |
LUO W, LI M F, ZHAO W Q, et al. Research on compliant assembly method for industrial robots based on force-position image learning[J]. Journal of Mechanical Engineering, 2022, 58(21): 69-77 (in Chinese).
DOI |
|
[8] | 潘柏松, 颜天野, 胡鑫达, 等. 基于几何约束与隐马尔可夫链模型的轴孔装配策略[J]. 计算机集成制造系统, 2022, 28(12): 3766-3776. |
PAN B S, YAN T Y, HU X D, et al. Peg-in-hole assembly strategy based on geometric constraint and hidden Markov model[J]. Computer Integrated Manufacturing Systems, 2022, 28(12): 3766-3776 (in Chinese). | |
[9] | GAO X, LING J, XIAO X H, et al. Learning force-relevant skills from human demonstration[EB/OL]. [2024-03-06]. https://www.researchgate.net/publication/330844389_Learning_Force-Relevant_Skills_from_Human_Demonstration. |
[10] | KOBER J, GIENGER M, STEIL J J. Learning movement primitives for force interaction tasks[C]// 2015 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2015: 3192-3199. |
[11] | WANG G H, YI J J, JI X C. Research on intelligent peg-in-hole assembly strategy based on deep reinforcement learning[C]// 2023 3rd Asia-Pacific Conference on Communications Technology and Computer Science. New York: IEEE Press, 2023: 468-473. |
[12] | INOUE T, DE MAGISTRIS G, MUNAWAR A, et al. Deep reinforcement learning for high precision assembly tasks[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2017: 819-825. |
[13] | CONNOLLY T H, PFEIFFER F. Neural network hybrid position/force control[C]// 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2002: 240-244. |
[14] |
HOU Z M, LI Z H, HSU C, et al. Fuzzy logic-driven variable time-scale prediction-based reinforcement learning for robotic multiple peg-in-hole assembly[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(1): 218-229.
DOI URL |
[15] |
LIU Y K, XU H, LIU D, et al. A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial robot grasping[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102365.
DOI URL |
[16] | 朱子璐, 刘永奎, 张霖, 等. 基于深度强化学习的机器人轴孔装配策略仿真研究[EB/OL]. (2023-07-20) [2023-12-01]. https://doi.org/10.16182/j.issn1004731x.joss.23-0518. |
ZHU Z L, LIU Y K, ZHANG L, et al. Simulation study on robot shaft-bore assembly strategy based on deep reinforcement learning[EB/OL]. (2023-07-20) [2023-12-01]. https://doi.org/10.16182/j.issn1004731x.joss.23-0518 (in Chinese). | |
[17] | LUO J L, SOLOWJOW E, WEN C T, et al. Reinforcement learning on variable impedance controller for high-precision robotic assembly[C]// 2019 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2019: 3080-3087. |
[18] |
ZHANG X M, ZHENG Y L, OTA J, et al. Peg-in-hole assembly based on two-phase scheme and F/T sensor for dual-arm robot[J]. Sensors, 2017, 17(9): 2004.
DOI URL |
[19] | 李歆雨, 张强, 文闻, 等. 一种基于阻抗控制的机械臂双轴孔插孔柔顺控制方法研究[J]. 空间控制技术与应用, 2022, 48(2): 96-102. |
LI X Y, ZHANG Q, WEN W, et al. A compliance control method for double peg-in-hole assembly of manipulator based on impedance control[J]. Aerospace Control and Application, 2022, 48(2): 96-102 (in Chinese). | |
[20] | 张立建, 胡瑞钦, 易旺民. 基于六维力传感器的工业机器人末端负载受力感知研究[J]. 自动化学报, 2017, 43(3): 439-447. |
ZHANG L J, HU R Q, YI W M. Research on force sensing for the end-load of industrial robot based on a 6-axis force/torque sensor[J]. Acta Automatica Sinica, 2017, 43(3): 439-447 (in Chinese). |
[1] |
LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin.
Detection of dress code violations based on improved YOLOv5s
[J]. Journal of Graphics, 2024, 45(3): 433-445.
|
[2] |
ZHANG Xiangsheng, YANG Xiao.
Defect detection method of rubber seal ring based on improved YOLOv7-tiny
[J]. Journal of Graphics, 2024, 45(3): 446-453.
|
[3] |
LI Tao, HU Ting, WU Dandan.
Monocular depth estimation combining pyramid structure and attention mechanism
[J]. Journal of Graphics, 2024, 45(3): 454-463.
|
[4] | GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua. Human action recognition algorithm based on semantics guided neural networks [J]. Journal of Graphics, 2024, 45(1): 26-34. |
[5] | ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines [J]. Journal of Graphics, 2024, 45(1): 90-101. |
[6] | GU Tianjun, XIONG Suya, LIN Xiao. Diversified generation of theatrical masks based on SASGAN [J]. Journal of Graphics, 2024, 45(1): 102-111. |
[7] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[8] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[9] | DING Jian-chuan, XIAO Jin-tong, ZHAO Ke-xin, JIA Dong-qing, CUI Bing-de, YANG Xin. Spiking neural network-based navigation and obstacle avoidance algorithm for complex scenes [J]. Journal of Graphics, 2023, 44(6): 1121-1129. |
[10] | ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics, 2023, 44(6): 1183-1190. |
[11] | ZHANG Chi, ZHANG Xiao-juan, ZHAO Yang, YANG Fan. Palette-based semi-interactive low-light Thangka images enhancement [J]. Journal of Graphics, 2023, 44(6): 1202-1211. |
[12] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[13] | SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu. Tunnel fire detection based on improved student-teacher network [J]. Journal of Graphics, 2023, 44(5): 978-987. |
[14] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[15] | LI Xin, PU Yuan-yuan, ZHAO Zheng-peng, XU Dan, QIAN Wen-hua. Content semantics and style features match consistent artistic style transfer [J]. Journal of Graphics, 2023, 44(4): 699-709. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||