Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 409-421.DOI: 10.11996/JG.j.2095-302X.2024030409
• Review • Previous Articles Next Articles
LI Xiangdong(), XIA Hanfei, SHAN Yifei, YIN Kailin, GENG Weidong
Received:
2023-08-31
Accepted:
2023-12-04
Online:
2024-06-30
Published:
2024-06-06
About author:
LI Xiangdong (1984-), associate professor, Ph.D. His main research interests cover intelligent human-machine interface and cross-device interaction. E-mail:axli@zju.edu.cn
Supported by:
CLC Number:
LI Xiangdong, XIA Hanfei, SHAN Yifei, YIN Kailin, GENG Weidong. Opportunities and challenges: automatic generation technologies for graphical user interfaces[J]. Journal of Graphics, 2024, 45(3): 409-421.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030409
名称 | 类型 | 数量 | 平台 |
---|---|---|---|
Rico[ | 软件界面图 | 72 k | 安卓端界面 |
Enrico[ | 软件界面图 | 1 460 | 安卓端界面 |
Screen2words[ | 软件界面及短语 | 22 417 | 安卓端界面 |
Sketch2Code[ | 手绘草图和高保真界面图 | 3 398 | 网页端界面 |
Pix2code[ | 图形界面及合成界面 | 苹果端:2 600 000 安卓端:21 000 000 网页端:310 000 | 苹果端 安卓端 网页端界面 |
UISketch[ | 手绘草图 | 17 979 | 跨平台界面元素 |
Syn[ | 低保真手绘草图 | 125 000 | 跨平台界面元素 |
SynZ[ | 合成的手绘界面草图 | 175 377 | 跨平台界面元素 |
Table 1 Datasets of graphic user interface
名称 | 类型 | 数量 | 平台 |
---|---|---|---|
Rico[ | 软件界面图 | 72 k | 安卓端界面 |
Enrico[ | 软件界面图 | 1 460 | 安卓端界面 |
Screen2words[ | 软件界面及短语 | 22 417 | 安卓端界面 |
Sketch2Code[ | 手绘草图和高保真界面图 | 3 398 | 网页端界面 |
Pix2code[ | 图形界面及合成界面 | 苹果端:2 600 000 安卓端:21 000 000 网页端:310 000 | 苹果端 安卓端 网页端界面 |
UISketch[ | 手绘草图 | 17 979 | 跨平台界面元素 |
Syn[ | 低保真手绘草图 | 125 000 | 跨平台界面元素 |
SynZ[ | 合成的手绘界面草图 | 175 377 | 跨平台界面元素 |
Fig. 8 Timeline of text-to-image technology development (Green: generative adversarial networks; Yellow: auto-regressive methods; Red: diffusion models)
[1] | STONE D, JARRETT C, WOODROFFE M, et al. User interface design and evaluation[M]. San Francisco: Morgan Kaufmann, 2005: 3-24. |
[2] | JANSEN B J. The graphical user interface[J]. ACM SIGCHI Bulletin, 1998, 30(2): 22-26. |
[3] | MARTINEZ W L. Graphical user interfaces[J]. WIREs Computational Statistics, 2011, 3(2): 119-133. |
[4] | GUO S N, JIN Z C, SUN F L, et al. Vinci: an intelligent graphic design system for generating advertising posters[C]// The 2021 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2021: 1-17. |
[5] | ZHAO T M, CHEN C Y, LIU Y N, et al. GUIGAN: learning to generate GUI designs using generative adversarial networks[C]// 2021 IEEE/ACM 43rd International Conference on Software Engineering. New York: IEEE Press, 2021: 748-760. |
[6] | GE X F. Android GUI search using hand-drawn sketches[C]// 2019 IEEE/ACM 41st International Conference on Software Engineering:Companion Proceedings. New York: IEEE Press, 2019: 141-143. |
[7] | CHEN J S, CHEN C Y, XING Z C, et al. Wireframe-based UI design search through image autoencoder[EB/OL]. [2023-01-12]. https://doi.org/10.1145/3391613. |
[8] | QASIM I, AZAM F, ANWAR M W, et al. Mobile user interface development techniques: a systematic literature review[C]// 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference. New York: IEEE Press, 2019: 1029-1034. |
[9] | SHI Y, SHANG M Y, QI Z Q. Intelligent layout generation based on deep generative models: a comprehensive survey[J]. Information Fusion, 2023, 100: 101940. |
[10] | MYERS B, HUDSON S E, PAUSCH R. Past, present, and future of user interface software tools[J]. ACM Transactions on Computer-Human Interaction, 2000, 7(1): 3-28. |
[11] |
HIRSCHBERG J, MANNING C D. Advances in natural language processing[J]. Science, 2015, 349(6245): 261-266.
DOI PMID |
[12] | 赵轶男. 车载终端界面的触觉反馈技术[D]. 长春: 吉林大学, 2023. |
ZHAO Y N. Haptic feedback technology for automotive terminal interface[D]. Changchun: Jilin University, 2023 (in Chinese). | |
[13] | 王韫, 何丽雯, 王党校. 智能家居中的触觉交互体验[J]. 包装工程, 2022, 43(16): 37-49, 108. |
WANG Y, HE L W, WANG D X. Haptic interaction experience in smart homes[J]. Packaging Engineering, 2022, 43(16): 37-49, 108 (in Chinese). | |
[14] | HABLER F, PEISKER M, HENZE N. Differences between smart speakers and graphical user interfaces for music search considering gender effects[C]// The 18th International Conference on Mobile and Ubiquitous Multimedia. New York: ACM, 2019: 1-7. |
[15] | KOLTHOFF K. Automatic generation of graphical user interface prototypes from unrestricted natural language requirements[C]// 2019 34th IEEE/ACM International Conference on Automated Software Engineering. New York: IEEE Press, 2020: 1234-1237. |
[16] | ZHAO N X, KIM N W, HERMAN L M, et al. ICONATE: automatic compound icon generation and ideation[C]// 2020 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2020: 1-13. |
[17] | HUSSAIN J, UL HASSAN A, MUHAMMAD BILAL H S, et al. Model-based adaptive user interface based on context and user experience evaluation[J]. Journal on Multimodal User Interfaces, 2018, 12(1): 1-16. |
[18] | KARRAY F, ALEMZADEH M, ABOU SALEH J, et al. Human-computer interaction: overview on state of the art[J]. International Journal on Smart Sensing and Intelligent Systems, 2008, 1(1): 137-159. |
[19] | SAKINAH S I, FADHLILLAH H S, AZURAT A, et al. Proposed user interface generation for software product lines engineering[C]// 2018 International Conference on Advanced Computer Science and Information Systems. New York: IEEE Press, 2019: 481-486. |
[20] | GAULKE W, ZIEGLER J. Using profiled ontologies to leverage model driven user interface generation[EB/OL]. [2023-02-01]. https://doi.org/10.1145/2774225.2775070. |
[21] | RUIZ J, SERRAL E, SNOECK M. UI-GEAR: user interface generation prEview capable to adapt in real-time[EB/OL]. [2023-02-01]. https://doi.org/10.5220/0006115402770284. |
[22] | SIROHI P, AGARWAL A, MAHESHWARI P. A survey on augmented virtual reality: applications and future directions[C]// 2020 7th International Conference on Information Technology Trends. New York: IEEE Press, 2021: 99-106. |
[23] | 赵沁平. 虚拟现实综述[J]. 中国科学: F辑: 信息科学, 2009, 39(1): 2-46. |
ZHAO Q P. Overview of virtual reality[J]. Science in China: Series F: Information Sciences, 2009, 39(1): 2-46 (in Chinese). | |
[24] | MACKINLAY J, CARD S K, ROBERTSON G G. A semantic analysis of the design space of input devices[J]. Human-Computer Interaction, 1990, 5(2-3): 145-190. |
[25] | 朱淼良, 姚远, 蒋云良. 增强现实综述[J]. 中国图象图形学报, 2004, 9(7): 767-774. |
ZHU M L, YAO Y, JIANG Y L. A survey on augmented reality[J]. Journal of Image and Graphics, 2004, 9(7): 767-774. (in Chinese). | |
[26] | JEFFRI N F S, RAMBLI D R A. Guidelines for the interface design of AR systems for manual assembly[EB/OL]. [2023-02-01]. https://doi.org/10.1145/3385378.3385389. |
[27] | XIE Y, HUANG D, WANG J, et al. CanvasEmb: learning layout representation with large-scale pre-training for graphic design[EB/OL]. [2023-02-01]. https://doi.org/10.1145/3474085.3475541. |
[28] | FENG S D, MA S Y, YU J Z, et al. Auto icon: an automated code generation tool for icon desiigns in UI development[C]// IUI ’21: The 26th Intemational Conference on Intelligent User Interface. New York: ACM, 2021:59-69. |
[29] | CHEN C Y, SU T, MENG G Z, et al. From UI design image to GUI skeleton: a neural machine translator to bootstrap mobile GUI implementation[C]// 2018 IEEE/ACM 40th International Conference on Software Engineering. New York: IEEE Press, 2018: 665-676. |
[30] | WANG B, LI G, ZHOU X, et al. Screen2Words: automatic mobile UI summarization with multimodal learning[C]// UIST ’21: The 34th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2021: 498-510. |
[31] | ZHANG T, LIU Y, GAO J, et al. Deep learning-based mobile application isomorphic GUI identification for automated robotic testing[J]. IEEE Software, 2020, 37(4): 67-74. |
[32] | DEKA B, HUANG Z F, FRANZEN C, et al. Rico: a mobile app dataset for building data-driven design applications[EB/OL]. [2023-02-01]. https://doi.org/10.1145/3126594.3126651. |
[33] | LEIVA L A, HOTA A, OULASVIRTA A. Enrico: a dataset for topic modeling of mobile UI designs[EB/OL]. [2023-02-01]. https://doi.org/10.1145/3406324.3410710. |
[34] | PANDIAN V P S, SULERI S, JARKE P D M. UISketch: a large-scale dataset of UI element sketches[EB/OL]. [2023-02-01]. https://doi.org/10.1145/3411764.3445784. |
[35] | PANDIAN V P S, SULERI S, JARKE M. Syn: synthetic dataset for training UI element detector from lo-fi sketches[C]// The 25th International Conference on Intelligent User Interfaces Companion. New York: ACM, 2020: 79-80. |
[36] | PANDIAN V P S, SULERI S, JARKE M. SynZ: enhanced synthetic dataset for training UI element detectors[EB/OL]. [2023-02-01]. https://doi.org/10.1145/3397482.3450725. |
[37] | LI Y, LI G, HE L H, et al. Widget captioning: generating natural language description for mobile user interface elements[EB/OL]// The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). [ 2023-02-01]. https://doi.org/10.48550/arXiv.2010.04295. |
[38] | LIU Z, CHEN C Y, WANG J J, et al. Owl eyes: spotting UI display issues via visual understanding[C]// 2020 35th IEEE/ACM International Conference on Automated Software Engineering. New York: IEEE Press, 2020: 398-409. |
[39] | CHANDEL R S, SHARMA S, KAUR S, et al. Smart watches: a review of evolution in bio-medical sector[J]. Materials Today: Proceedings, 2022, 50: 1053-1066. |
[40] | BUNIAN S, LI K, JEMMALI C, et al. VINS: visual search for mobile user interface design[C]// 2021 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2021: 1-14. |
[41] | JAIN V, AGRAWAL P, BANGA S, et al. Sketch2Code: transformation of sketches to UI in real-time using deep neural network[EB/OL]. [2023-01-23]. https://arxiv.org/abs/1910.08930.pdf. |
[42] | BELTRAMELLI T. Pix2code: generating code from a graphical user interface screenshot[C]// The ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New York: ACM, 2018: 1-6. |
[43] | RUIZ J, SERRAL E, SNOECK M. Unifying functional user interface design principles[J]. International Journal of Human-Computer Interaction, 2021, 37(1): 47-67. |
[44] | JOHNSON J. Designing with the mind in mind: simple guide to understanding user interface design guidelines[M]. 3rd ed. Burlington: Morgan Kaufmann, 2020: 11-14. |
[45] | NACHEVA R. Principles of user interface design: important rules that every designer should follow[J]. Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, 2015, 1: 140-149. |
[46] | SHNEIDERMAN B, PLAISANT C, COHEN M, et al. Designing the user interface: strategies for effective human-computer interaction[M]. 6th ed. London: Pearson, 2016: 57-78. |
[47] | NIELSEN J. Ten usability heuristics[EB/OL]. [2023-02-01]. https://www.nngroup.com/articles/ten-usability-heuristics/. |
[48] | RAO NAIDU V, SRINIVAS S, AL RAISI M, et al. Evaluation of hypermedia tools in terms of usability heuristics for English language teaching[J]. Arab World English Journal, 2021(2): 133-149. |
[49] | JIANG R, GU Z Y. Current theoretical developments and applications of fitts’ law: a literature review[C]// International Conference on Applied Human Factors and Ergonomics. Cham: Springer, 2020: 753-760. |
[50] | KAPROS E. Fitts’ law as an education resource for human-computer interaction in computer science curricula[J]. International Online Journal of Primary Education, 2018, 7(1): 28-39. |
[51] | WANG H F, WANG J L, TANG Q H. A review of application of affordance theory in information systems[J]. Journal of Service Science and Management, 2018, 11(1): 56-70. |
[52] | SCHOOP E, ZHOU X, LI G, et al. Predicting and explaining mobile UI tappability with vision modeling and saliency analysis[C]// 2022 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2022: 1-21. |
[53] | LIANG Y X. Application of Gestalt psychology in product human-machine Interface design[J]. IOP Conference Series: Materials Science and Engineering, 2018, 392: 062054. |
[54] | LI B Y, CAO Y. Research on layout design of main interface of stadium monitoring system based on gestalt psychology[M]// Human Interface and the Management of Information. Visual Information and Knowledge Management. Cham: Springer International Publishing, 2019: 44-55. |
[55] | 蔡松霏. 移动互联网应用界面设计中的视觉统一性研究[D]. 杭州: 中国美术学院, 2018. |
CAI S F. Visual unity in user interface of mobile Internet applications[D]. Hangzhou: China Academy of Art, 2018 (in Chinese). | |
[56] | SHELLEY C. The nature of simplicity in Apple design[J]. The Design Journal, 2015, 18(3): 439-456. |
[57] | EL-SHERBINY H F. Realism and 3D graphics in UI designs and social media platforms (Trend of 2020/21)[J]. Journal of Arts & Architecture Research Studies, 2022, 3(5): 138-53. |
[58] | MACIK M. Automatic user interface generation[D]. Prague: Czech Technical University, 2016. |
[59] | ERTL D. Semi-automatic multimodal user interface generation[C]// The 1st ACM SIGCHI symposium on Engineering interactive computing systems. New York: ACM, 2009: 321-324. |
[60] | O’DONOVAN P, AGARWALA A, HERTZMANN A. Learning layouts for single-PageGraphic designs[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(8): 1200-1213. |
[61] | O'DONOVAN P, AGARWALA A, HERTZMANN A. DesignScape: design with interactive layout suggestions[C]// The 33rd Annual ACM Conference on Human Factors in Computing Systems. New York: ACM, 2015: 1221-1224. |
[62] | RANEBURGER D, POPP R, VANDERDONCKT J. An automated layout approach for model-driven WIMP-UI generation[C]// The 4th ACM SIGCHI Symposium on Engineering Interactive Computing systems. New York: ACM, 2012: 91-100. |
[63] | YANG X Y, MEI T, XU Y Q, et al. Automatic generation of visual-textual presentation layout[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2016, 12(2): 33: 1-33: 22. |
[64] | TABATA S, YOSHIHARA H, MAEDA H, et al. Automatic layout generation for graphical design magazines[C]// SIGGRAPH ’19: ACM SIGGRAPH 2019 Posters. New York: ACM, 2019: 1-2. |
[65] | BRÜCKNER L. Graphical User Interface auto-completion with element constraints[D]. Malaga: ETSI_Informatica, 2020. |
[66] | VEMPATI S, MALAYIL K T, SRUTHI V, et al. Enabling hyper-personalisation: automated ad creative generation and ranking for fashion e-commerce[C]// Fashion Recommender Systems. Cham: Springer, 2020: 25-48. |
[67] | REBELO S M, MARTINS T, BICKER J, et al. Exploring automatic fitness evaluation for evolutionary typesetting[C]// The 13th Conference on Creativity and Cognition. New York: ACM, 2021: 1-9. |
[68] | LI J N, YANG J M, HERTZMANN A, et al. LayoutGAN: generating graphic layouts with wireframe discriminators[EB/OL]. [2023-01-13]. https://arxiv.org/abs/1901.06767.pdf. |
[69] | KIKUCHI K, SIMO-SERRA E, OTANI M, et al. Constrained graphic layout generation via latent optimization[C]// The 29th ACM International Conference on Multimedia. New York: ACM, 2021: 88-96. |
[70] | LEE H Y, JIANG L, ESSA I, et al. Neural design network: graphic layout generation with constraints[C]// European Conference on Computer Vision. Cham: Springer, 2020: 491-506. |
[71] | ZHENG X R, QIAO X T, CAO Y, et al. Content-aware generative modeling of graphic design layouts[EB/OL]. [2023-02-02]. https://doi.org/10.1145/3306346.3322971. |
[72] | ZHOU M, XU C C, MA Y, et al. Composition-aware graphic layout GAN for visual-textual presentation designs[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2205.00303.pdf. |
[73] | ZHANG C, ZHANG C, ZHANG M, et al. Text-to-image diffusion model in generative ai: A survey[EB/OL]. [2023-05-01]. https://doi.org/10.48550/arXiv.2303.07909. |
[74] | QIAO T T, ZHANG J, XU D Q, et al. MirrorGAN: learning text-to-image generation by redescription[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1505-1514. |
[75] | LI J N, YANG J M, ZHANG J M, et al. Attribute-conditioned layout GAN for automatic graphic design[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(10): 4039-4048. |
[76] | GAJJAR N, PANDIAN V P S, SULERI S, et al. Akin: generating UI wireframes from UI design patterns using deep learning[EB/OL]. [2023-01-11]. https://doi.org/10.1145/3397482.3450727. |
[77] | KAINDL H. High-level interaction design with discourse models for automated web GUI generation[C]// International Conference on Web Engineering. Cham: Springer, 2021: 542-546. |
[78] | ENGEL J, MÄRTIN C, FORBRIG P. Practical aspects of pattern-supported model-driven user interface generation[C]// International Conference on Human-Computer Interaction. Cham: Springer, 2017: 397-414. |
[79] | CHEN S, FAN L L, SU T, et al. Automated cross-platform GUI code generation for mobile apps[C]// 2019 IEEE 1st International Workshop on Artificial Intelligence for Mobile. New York: IEEE Press, 2019: 13-16. |
[80] | MISTRY M, APTE A, GHODAKE V, et al. Machine learning based user interface generation[C]// International Conference on Intelligent Computing, Information and Control Systems. Cham: Springer, 2020: 453-460. |
[81] | ZHANG W, LUAN S M, TIAN L Q. A rapid combined model for automatic generating web UI codes[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-10. |
[82] | PANG X W, ZHOU Y Q, LI P C, et al. A novel syntax-aware automatic graphics code generation with attention-based deep neural network[J]. Journal of Network and Computer Applications, 2020, 161: 102636. |
[83] | MORAN K, BERNAL-CÁRDENAS C, CURCIO M, et al. Machine learning-based prototyping of graphical user interfaces for mobile apps[J]. IEEE Transactions on Software Engineering, 2020, 46(2): 196-221. |
[84] | HEITKÖTTER H, MAJCHRZAK T A, KUCHEN H. Cross-platform model-driven development of mobile applications with md2[C]// The 28th Annual ACM Symposium on Applied Computing. New York: ACM, 2013: 526-533. |
[85] | CAO Y H, LI S Y, LIU YX, et al. A comprehensive survey of AI-generated content (AIGC): a history of generative AI from GAN to ChatGPT[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2303.04226.pdf. |
[86] | WU J Y, GAN W S, CHEN Z F, et al. AI-generated content (AIGC): a survey[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2304.06632.pdf. |
[87] | CHEN C, FU J, LYU L J. A pathway towards responsible AI generated content[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2303.01325.pdf. |
[88] | VAN DIS E A M, BOLLEN J, ZUIDEMA W, et al. ChatGPT: five priorities for research[J]. Nature, 2023, 614(7947): 224-226. |
[89] | XIA M, ZHOU Y C. Research on UI design and optimization of digital media based on artificial intelligence[J]. Journal of Sensors, 2022, 2022: 1-17. |
[90] | GUPTA K, LAZAROW J, ACHILLE A, et al. LayoutTransformer: layout generation and completion with self-attention[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 984-994. |
[91] | JYOTHI A A, DURAND T, HE J W, et al. LayoutVAE: stochastic scene layout generation from a label set[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 9894-9903. |
[92] | ARROYO D M, POSTELS J, TOMBARI F. Variational transformer networks for layout generation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13637-13647. |
[93] | KIRMANI A R. Artificial intelligence-enabled science poetry[J]. ACS Energy Letters, 2023, 8(1): 574-576. |
[94] | LUND B, TING W. Chatting about ChatGPT: how may AI and GPT impact academia and libraries?[EB/OL]. [2023-06-01]. https://www.emerald.com/insight/content/doi/10.1108/LHTN-01-2023-0009/full/html. |
[95] | ADESSO G. Towards the ultimate brain: exploring scientific discovery with ChatGPT AI[J]. AI Magazine, 2023, 44(3): 328-342. |
[96] | BORJI A. Generated faces in the wild: quantitative comparison of stable diffusion, midjourney and DALL-E 2[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2210.00586.pdf. |
[97] | ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10684-10695. |
[98] | WEI J L, COURBIS A L, LAMBOLAIS T, et al. Boosting GUI prototyping with diffusion models[C]// 2023 IEEE 31st International Requirements Engineering Conference. New York: IEEE Press, 2023: 275-280. |
[99] | XU J P, ZHANG X L, LI H, et al. Is everyone an artist? A study on user experience of AI-based painting system[J]. Applied Sciences, 2023, 13(11): 6496. |
[100] | ZHANG C N, ZHANG C S, ZHENG S, et al. A complete survey on generative AI (AIGC): is ChatGPT from GPT-4 to GPT-5 all You need? [EB/OL]. [2023-01-13]. https://arxiv.org/abs/2303.11717.pdf. 2023. |
[101] | ZHANG L M, RAO A Y, AGRAWALA M. Adding conditional control to text-to-image diffusion models[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2302.05543.pdf. |
[102] | JEFFRIES R, MILLER J R, WHARTON C, et al. User interface evaluation in the real world: a comparison of four techniques[C]/ The SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 1991: 119-124. |
[103] | 郑瑞凌, 张俊松. 脑电时空多特征融合的数字图形界面认知负荷评价方法[J]. 计算机辅助设计与图形学学报, 2020, 32(7): 1062-1069. |
ZHENG R L, ZHANG J S. Assessing cognitive load combining features of time, frequency and spatial domain under digital graphical interface[J]. Journal of Computer- Aided Design & Computer Graphics, 2020, 32(7): 1062-1069 (in Chinese). | |
[104] |
王洪宝, 王金, 支锦亦, 等. 基于RAMSIS仿真的高速列车驾驶界面人机工效评估[J]. 机械设计, 2020, 37(1): 128-134.
DOI |
WANG H B, WANG J, ZHI J Y, et al. Ergonomic evaluation of high-speed train driving interface based on RAMSIS simulation[J]. Journal of Machine Design, 2020, 37(1): 128-134 (in Chinese). | |
[105] | 姜钧译. 手机游戏用户体验测量方法研究[D]. 沈阳: 东北大学, 2019. |
JIANG J Y. Measurement method for user experience of mobile games[D]. Shenyang: Northeastern University, 2019 (in Chinese). | |
[106] | NIELSEN J, MOLICH R. Heuristic evaluation of user interfaces[EB/OL]. [2022-11-01]. https://doi.org/10.1145/97243.97281. |
[107] | ALOMARI H W, RAMASAMY V, KIPER J D, et al. A User Interface (UI) and User eXperience (UX) evaluation framework for cyberlearning environments in computer science and software engineering education[J]. Heliyon, 2020, 6(5): e03917. |
[108] |
HERMAWATI S, LAWSON G. Establishing usability heuristics for heuristics evaluation in a specific domain: is there a consensus?[J]. Applied Ergonomics, 2016, 56: 34-51.
DOI PMID |
[109] | ISLAM M N, BOUWMAN H, ISLAM A K M N. Evaluating web and mobile user interfaces with semiotics: an empirical study[J]. IEEE Access, 2020, 8: 84396-84414. |
[110] |
WICHANSKY A M. Usability testing in 2000 and beyond[J]. Ergonomics, 2000, 43(7): 998-1006.
PMID |
[111] | NURWULAN N R, ZAHIRAH K F. User interface evaluation of a real-time gimmick tracking[J]. Journal of Physics: Conference Series, 2021, 1882(1): 012123. |
[112] | ZHANG W J, FELTNER D, SHIRLEY J, et al. Enhancement and application of a UAV control interface evaluation technique: modified GEDIS-UAV[J]. ACM Transactions on Human-Robot Interaction, 2020, 9(2): 14:1-14:20, |
[113] | HUILCAPI-COLLANTES C, MARTÍN A H, HERNÁNDEZ-RAMOS J P. Pedagogical and user interface usability evaluation of an educational mobile app that promotes visual literacy[C]// TEEM’20:Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality. New York: ACM, 2020: 315-321. |
[114] | FANG Y M, LIN C. The usability testing of VR interface for tourism apps[J]. Applied Sciences, 2019, 9(16): 3215. |
[115] | ROHRER C P, WENDT J, SAURO J, et al. Practical usability rating by experts (PURE): a pragmatic approach for scoring product usability[C]// 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2016: 786-795. |
[116] | 段艳花, 刘子建, 宁铎. 基于眼动技术的TMA界面评估及优化[J]. 图学学报, 2022, 43(4): 745-752. |
DUAN Y H, LIU Z J, NING D. Evaluation and optimization of TMA interface supported eye movement technology[J]. Journal of Graphics, 2022, 43(4): 745-752 (in Chinese). | |
[117] | GOLDBERG J H, KOTVAL X P. Computer interface evaluation using eye movements: methods and constructs[J]. International Journal of Industrial Ergonomics, 1999, 24(6): 631-645. |
[118] | 王诗傲. 基于眼动实验的工业设计服务网站界面评估体系研究[D]. 西安: 西安工程大学, 2017. |
WANG S A. The research about industrial design website evaluation system based on eye-tracking experiment[D]. Xi'an: Xi'an Polytechnic University, 2017 (in Chinese). | |
[119] | 王刚, 王子凡. 基于眼动追踪的智能电视界面可用性评估研究[J]. 包装工程, 2022, 43(18): 65-71. |
WANG G, WANG Z F. Usability evaluation of smart TV interface based on eye tracking[J]. Packaging Engineering, 2022, 43(18): 65-71 (in Chinese). | |
[120] | CHENG S W, DEY A K. I see, you design: user interface intelligent design system with eye tracking and interactive genetic algorithm[J]. CCF Transactions on Pervasive Computing and Interaction, 2019, 1(3): 224-236. |
[121] | ZHANG J Y, CHANG D N, ZHANG Z. Review on the application of eye-tracking technology in usability evaluation of E-government apps[C]// 2021 IEEE International Conference on Industrial Engineering and Engineering Management. New York: IEEE Press, 2022: 1646-1650. |
[122] | 蔡船, 邓丽, 陈波, 等. 脑电技术在工业设计中的应用[J]. 机械设计与制造工程, 2017, 46(10): 80-84. |
CAI C, DENG L, CHEN B, et al. Application of EEG technology in industrial design[J]. Machine Design and Manufacturing Engineering, 2017, 46(10): 80-84 (in Chinese). | |
[123] | 牛亚峰. 基于脑电技术的数字界面可用性评价方法研究[D]. 南京: 东南大学, 2016. |
NIU Y F. Usability evaluation methods research of digital interface based on brain electrical technology[D]. Nanjing: Southeast University, 2016 (in Chinese). | |
[124] | SULIKOWSKI P, ZDZIEBKO T. Deep learning-enhanced framework for performance evaluation of a recommending interface with varied recommendation position and intensity based on eye-tracking equipment data processing[J]. Electronics, 2020, 9(2): 266. |
[125] | WANG W G, SHEN J B. Deep visual attention prediction[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2018, 27(5): 2368-2378. |
[126] | YAN S Y, WEI Y Y, TRAN C C. Evaluation and prediction mental workload in user interface of maritime operations using eye response[J]. International Journal of Industrial Ergonomics, 2019, 71: 117-127. |
[127] | 窦金花. 面向包容性的人机交互界面评估与优化方法研究[D]. 北京: 北京科技大学, 2021. |
DOU J H. Research on evaluation and optimization methods for inclusiveness-oriented human-computer interface[D]. Beijing: University of Science and Technology Beijing, 2021 (in Chinese). | |
[128] | GONZALEZ-CALLEROS J, OSTERLOH J P, FEIL R, et al. Automated UI evaluation based on a cognitive architecture and UsiXML[J]. Science of Computer Programming, 2014, 86: 43-57. |
[1] | GAO Yue, HAN Hong-lei. Audience screen display system based on light-emitting devices [J]. Journal of Graphics, 2023, 44(4): 784-793. |
[2] | LIU You-quan , WANG Yuan-chao , XU Kun , LIU Zheng-xiong , HUANG Pan-feng. Mixed reality based remote collaborative assembly guidance [J]. Journal of Graphics, 2021, 42(2): 216-221. |
[3] | WANG Er-zhuo1, YUAN Xiang1, LI Shi-yan2. Proactive interaction design of conversational agent for smart homes [J]. Journal of Graphics, 2020, 41(4): 658-666. |
[4] | LIN Ying-ying, CAI Rui-fan, ZHU Yu-zhen, TANG Xiang-jun, JIN Xiao-gang. Virtual reality pottery modeling system based on leap motion [J]. Journal of Graphics, 2020, 41(1): 57-65. |
[5] | DAI Sha1,2, SI Wei-xin2,3, QIAN Yin-ling2, ZHENG Rui2, WANG Qiong2, XU Dong-liang1, PENGYan-jun4, HENG Pheng-Ann3,2 . Towards Human-Computer Interface Design for Virtual Micro Cataract Surgical System [J]. Journal of Graphics, 2019, 40(3): 565-573. |
[6] | SUN Hui, LV Jian, CUN Wenzhe. VR System Information Visualization Model Cognition [J]. Journal of Graphics, 2018, 39(2): 317-326. |
[7] | MA Lisha, LV Jian, PAN Weijie, SHAN Junjun, PING Zhengqiang. Research on Implicit Intention Recognition and Classification Based on Eye Movement Pattern [J]. Journal of Graphics, 2017, 38(3): 332-340. |
[8] | Zhang Heng, Zhang Zeyu. Human Motion Capture System Based on MEMS Sensors and Unity3D [J]. Journal of Graphics, 2015, 36(2): 274-281. |
[9] | Zhu Yan, Cao Meng. Research on the Industrial Design Reform for NCP-400L CNC Lathe [J]. Journal of Graphics, 2014, 35(2): 250-255. |
[10] | Xu Yueyue, Lin Dajun. Optimizing axonometric projection of an object on stereoscopic effect [J]. Journal of Graphics, 2012, 33(3): 1-4. |
[11] | CAO Wen-gang, CHENG Wu-si, SONG Jun. Application Research on Virtual Assembly of Tractor’s Front Drive Axle [J]. Journal of Graphics, 2011, 32(3): 75-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||