Journal of Graphics ›› 2025, Vol. 46 ›› Issue (3): 568-577.DOI: 10.11996/JG.j.2095-302X.2025030568
• Image Processing and Computer Vision • Previous Articles Next Articles
WANG Suqin1(), DU Yujie1, SHI Min1(
), ZHU Dengming2,3
Received:
2024-06-20
Accepted:
2024-12-22
Online:
2025-06-30
Published:
2025-06-13
Contact:
SHI Min
About author:
First author contact:WANG Suqin (1970-), associate professor, master. Her main research interests cover computer vision, intelligent software technology. E-mail:wsq@ncepu.edu.cn
Supported by:
CLC Number:
WANG Suqin, DU Yujie, SHI Min, ZHU Dengming. Detection of apparent defects in a small sample of industrial products with category imbalance[J]. Journal of Graphics, 2025, 46(3): 568-577.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025030568
Fig. 3 Examples of apparent defects in aluminium blister packaging for acupuncture needles ((a) Empty-blister; (b) Multi-pin; (c) Unusual-pin; (d) Plate-fold; (e) Blister-fold; (f) Break-pin)
Model | AP/% | mAP/% | FPS | |||||
---|---|---|---|---|---|---|---|---|
空泡(169) | 多针(69) | 药板褶皱(54) | 泡罩褶皱(37) | 异常针(20) | 断针(10) | |||
Faster- RCNN | 99.5 | 73.6 | 92.3 | 58.2 | 53.3 | 46.7 | 70.6 | 11.52 |
YOLOv5s | 99.5 | 83.7 | 94.3 | 70.6 | 88.3 | 72.2 | 84.8 | 102.04 |
YOLOv5m | 99.5 | 94.9 | 95.6 | 66.5 | 93.9 | 89.4 | 90.0 | 43.67 |
YOLOv5s+CBL | 99.5 | 86.4 | 94.0 | 65.0 | 78.1 | 82.0 | 84.2 | 102.04 |
YOLOv7 | 99.5 | 76.0 | 81.9 | 47.6 | 54.2 | 68.0 | 71.2 | 46.08 |
YOLOv8s | 99.5 | 92.4 | 91.5 | 72.8 | 92.4 | 81.1 | 88.3 | 98.04 |
YOLOv8m | 99.5 | 94.9 | 95.8 | 80.6 | 90.6 | 84.5 | 91.0 | 43.10 |
YOLOv8s+EFL | 99.5 | 92.7 | 95.8 | 73.5 | 94.6 | 84.0 | 90.0 | 96.15 |
YOLOv10s | 99.4 | 83.1 | 91.6 | 69.2 | 90.1 | 75.9 | 84.0 | 86.96 |
Ours | 99.5 | 96.8 | 95.6 | 82.7 | 94.8 | 90.2 | 93.3 | 99.01 |
Table 1 Defect detection results of different methods on acupuncture needle dataset
Model | AP/% | mAP/% | FPS | |||||
---|---|---|---|---|---|---|---|---|
空泡(169) | 多针(69) | 药板褶皱(54) | 泡罩褶皱(37) | 异常针(20) | 断针(10) | |||
Faster- RCNN | 99.5 | 73.6 | 92.3 | 58.2 | 53.3 | 46.7 | 70.6 | 11.52 |
YOLOv5s | 99.5 | 83.7 | 94.3 | 70.6 | 88.3 | 72.2 | 84.8 | 102.04 |
YOLOv5m | 99.5 | 94.9 | 95.6 | 66.5 | 93.9 | 89.4 | 90.0 | 43.67 |
YOLOv5s+CBL | 99.5 | 86.4 | 94.0 | 65.0 | 78.1 | 82.0 | 84.2 | 102.04 |
YOLOv7 | 99.5 | 76.0 | 81.9 | 47.6 | 54.2 | 68.0 | 71.2 | 46.08 |
YOLOv8s | 99.5 | 92.4 | 91.5 | 72.8 | 92.4 | 81.1 | 88.3 | 98.04 |
YOLOv8m | 99.5 | 94.9 | 95.8 | 80.6 | 90.6 | 84.5 | 91.0 | 43.10 |
YOLOv8s+EFL | 99.5 | 92.7 | 95.8 | 73.5 | 94.6 | 84.0 | 90.0 | 96.15 |
YOLOv10s | 99.4 | 83.1 | 91.6 | 69.2 | 90.1 | 75.9 | 84.0 | 86.96 |
Ours | 99.5 | 96.8 | 95.6 | 82.7 | 94.8 | 90.2 | 93.3 | 99.01 |
Model | AP/% | mAP/% | FPS | |||
---|---|---|---|---|---|---|
破损(551) | 铝箔压坏(202) | 圆点(165) | 脏污(56) | |||
Faster-RCNN | 91.7 | 94.5 | 83.2 | 82.9 | 88.1 | 11.15 |
YOLOv5s | 86.3 | 94.7 | 90.7 | 84.0 | 89.0 | 108.70 |
YOLOv5m | 91.2 | 94.6 | 90.0 | 84.5 | 90.1 | 42.74 |
YOLOv5s+CBL | 90.6 | 95.6 | 90.2 | 80.4 | 89.2 | 106.38 |
YOLOv7 | 84.2 | 88.9 | 74.7 | 80.0 | 75.1 | 38.91 |
YOLOv8s | 92.2 | 93.8 | 87.5 | 81.6 | 88.8 | 88.50 |
YOLOv8m | 91.9 | 94.1 | 89.4 | 84.4 | 90.0 | 37.88 |
YOLOv8s+EFL | 91.6 | 93.2 | 88.8 | 67.9 | 85.4 | 88.50 |
YOLOv10s | 93.1 | 94.1 | 84.6 | 78.1 | 87.4 | 79.37 |
Ours | 93.7 | 94.6 | 92.4 | 84.8 | 91.4 | 90.09 |
Table 2 Defect detection results of different methods on the pharmaceutical plate dataset
Model | AP/% | mAP/% | FPS | |||
---|---|---|---|---|---|---|
破损(551) | 铝箔压坏(202) | 圆点(165) | 脏污(56) | |||
Faster-RCNN | 91.7 | 94.5 | 83.2 | 82.9 | 88.1 | 11.15 |
YOLOv5s | 86.3 | 94.7 | 90.7 | 84.0 | 89.0 | 108.70 |
YOLOv5m | 91.2 | 94.6 | 90.0 | 84.5 | 90.1 | 42.74 |
YOLOv5s+CBL | 90.6 | 95.6 | 90.2 | 80.4 | 89.2 | 106.38 |
YOLOv7 | 84.2 | 88.9 | 74.7 | 80.0 | 75.1 | 38.91 |
YOLOv8s | 92.2 | 93.8 | 87.5 | 81.6 | 88.8 | 88.50 |
YOLOv8m | 91.9 | 94.1 | 89.4 | 84.4 | 90.0 | 37.88 |
YOLOv8s+EFL | 91.6 | 93.2 | 88.8 | 67.9 | 85.4 | 88.50 |
YOLOv10s | 93.1 | 94.1 | 84.6 | 78.1 | 87.4 | 79.37 |
Ours | 93.7 | 94.6 | 92.4 | 84.8 | 91.4 | 90.09 |
Model | Neck | Loss | AP/% | mAP/% | |||||
---|---|---|---|---|---|---|---|---|---|
空泡 | 多针 | 药板褶皱 | 泡罩褶皱 | 异常针 | 断针 | ||||
YOLOv8s | × | × | 99.5 | 92.4 | 91.5 | 72.8 | 92.4 | 81.1 | 88.3 |
+Neck | √ | × | 99.5 | 93.2 | 95.4 | 78.5 | 93.4 | 85.6 | 90.9 |
+Loss | × | √ | 99.5 | 96.6 | 95.4 | 72.9 | 92.1 | 86.9 | 90.6 |
Ours | √ | √ | 99.5 | 96.8 | 95.6 | 82.7 | 94.8 | 90.2 | 93.3 |
Table 3 Results of ablation experiments
Model | Neck | Loss | AP/% | mAP/% | |||||
---|---|---|---|---|---|---|---|---|---|
空泡 | 多针 | 药板褶皱 | 泡罩褶皱 | 异常针 | 断针 | ||||
YOLOv8s | × | × | 99.5 | 92.4 | 91.5 | 72.8 | 92.4 | 81.1 | 88.3 |
+Neck | √ | × | 99.5 | 93.2 | 95.4 | 78.5 | 93.4 | 85.6 | 90.9 |
+Loss | × | √ | 99.5 | 96.6 | 95.4 | 72.9 | 92.1 | 86.9 | 90.6 |
Ours | √ | √ | 99.5 | 96.8 | 95.6 | 82.7 | 94.8 | 90.2 | 93.3 |
Model | AP/% | mAP/% | FPS | |||||
---|---|---|---|---|---|---|---|---|
夹杂(824) | 斑块(689) | 开裂(527) | 轧制氧化皮(456) | 划痕(390) | 点蚀表面(295) | |||
Faster- RCNN | 80.4 | 87.9 | 49.8 | 66.1 | 94.1 | 72.6 | 75.2 | 12.08 |
YOLOv5s | 73.8 | 87.5 | 53.1 | 58.7 | 91.2 | 78.8 | 73.9 | 114.94 |
YOLOv5m | 83.6 | 87.9 | 52.9 | 68.4 | 91.8 | 78.0 | 77.1 | 43.67 |
YOLOv5s+CBL | 81.6 | 86.2 | 45.4 | 59.5 | 91.1 | 73.3 | 72.9 | 114.94 |
YOLOv7 | 82.8 | 86.9 | 49.8 | 66.0 | 93.7 | 79.2 | 76.4 | 42.37 |
YOLOv8s | 81.3 | 91.2 | 49.7 | 65.5 | 89.4 | 79.4 | 76.1 | 89.29 |
YOLOv8m | 85.8 | 92.9 | 45.6 | 64.5 | 93.8 | 80.4 | 77.2 | 38.17 |
YOLOv8s+EFL | 77.7 | 86.2 | 44.7 | 52.3 | 89.3 | 79.4 | 71.8 | 90.09 |
YOLOv10s | 80.2 | 88.3 | 57.8 | 59.6 | 93.0 | 80.5 | 76.6 | 82.64 |
Ours | 84.0 | 86.4 | 59.3 | 68.8 | 92.3 | 81.5 | 78.7 | 94.34 |
Table 4 Results of different methods for the steel dataset
Model | AP/% | mAP/% | FPS | |||||
---|---|---|---|---|---|---|---|---|
夹杂(824) | 斑块(689) | 开裂(527) | 轧制氧化皮(456) | 划痕(390) | 点蚀表面(295) | |||
Faster- RCNN | 80.4 | 87.9 | 49.8 | 66.1 | 94.1 | 72.6 | 75.2 | 12.08 |
YOLOv5s | 73.8 | 87.5 | 53.1 | 58.7 | 91.2 | 78.8 | 73.9 | 114.94 |
YOLOv5m | 83.6 | 87.9 | 52.9 | 68.4 | 91.8 | 78.0 | 77.1 | 43.67 |
YOLOv5s+CBL | 81.6 | 86.2 | 45.4 | 59.5 | 91.1 | 73.3 | 72.9 | 114.94 |
YOLOv7 | 82.8 | 86.9 | 49.8 | 66.0 | 93.7 | 79.2 | 76.4 | 42.37 |
YOLOv8s | 81.3 | 91.2 | 49.7 | 65.5 | 89.4 | 79.4 | 76.1 | 89.29 |
YOLOv8m | 85.8 | 92.9 | 45.6 | 64.5 | 93.8 | 80.4 | 77.2 | 38.17 |
YOLOv8s+EFL | 77.7 | 86.2 | 44.7 | 52.3 | 89.3 | 79.4 | 71.8 | 90.09 |
YOLOv10s | 80.2 | 88.3 | 57.8 | 59.6 | 93.0 | 80.5 | 76.6 | 82.64 |
Ours | 84.0 | 86.4 | 59.3 | 68.8 | 92.3 | 81.5 | 78.7 | 94.34 |
[1] | 罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039. |
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. SCIENTIA SINICA Informationis, 2022, 52(6): 1002-1039 (in Chinese). | |
[2] | 疏义桂. 基于机器视觉的铝塑泡罩包装药品缺陷检测[D]. 武汉: 华中科技大学, 2013. |
SHU Y G. Research on detection of medicines in aluminum- plastic blister package based on machine vision[D]. Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese). | |
[3] | 谷紫颖. 铝塑泡罩药品缺陷检测技术的研究[D]. 济南: 山东大学, 2020. |
GU Z Y. Research on defect detection technology of aluminum- plastic blister medicine[D]. Jinan: Shandong University, 2020 (in Chinese). | |
[4] | 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708. |
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708 (in Chinese). | |
[5] | 李炳臻, 姜文志, 顾佼佼, 等. 基于卷积神经网络的目标检测算法综述[J]. 计算机与数字工程, 2022, 50(5): 1010-1017. |
LI B Z, JIANG W Z, GU J J, et al. Review of target detection algorithms based on deep learning[J]. Computer & Digital Engineering, 2022, 50(5): 1010-1017 (in Chinese). | |
[6] | LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21(3): 63. |
[7] | 王素琴, 任琪, 石敏, 等. 基于异常检测的产品表面缺陷检测与分割[J]. 图学学报, 2022, 43(3): 377-386. |
WANG S Q, REN Q, SHI M, et al. Product surface defect detection and segmentation based on anomaly detection[J]. Journal of Graphics, 2022, 43(3): 377-386 (in Chinese).
DOI |
|
[8] | 张玥, 陈锡伟, 陈梦丹, 等. 基于对比学习生成对抗网络的无监督工业品表面异常检测[J]. 电子测量与仪器学报, 2023, 37(10): 193-201. |
ZHANG Y, CHEN X W, CHEN M D, et al. Unsupervised surface anomaly detection of industrial products based on contrastive learning generative adversarial network[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(10): 193-201 (in Chinese). | |
[9] | 杜娟, 杨钧植. 基于迁移学习的小样本连接器缺陷检测方法[J]. 自动化与信息工程, 2022, 43(5): 1-7. |
DU J, YANG J Z. Small-sample connector defect detection method based on transfer learning[J]. Automation & Information Engineering, 2022, 43(5): 1-7 (in Chinese). | |
[10] | 翟永杰, 胡哲东, 白云山, 等. 融合迁移学习的绝缘子缺陷分级检测方法[J]. 电子测量技术, 2023, 46(6): 23-30. |
ZHAI Y J, HU Z D, BAI Y S, et al. Integrating transfer learning for insulator defect grading detection[J]. Electronic Measurement Technology, 2023, 46(6): 23-30 (in Chinese). | |
[11] | XIAO W W, SONG K C, LIU J, et al. Graph embedding and optimal transport for few-shot classification of metal surface defect[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5010310. |
[12] |
丁鹏, 卢文壮, 刘杰, 等. 基于生成对抗网络的叶片表面缺陷图像数据增强[J]. 组合机床与自动化加工技术, 2022(7): 18-21.
DOI |
DING P, LU W Z, LIU J, et al. Image data augmentation of blade surface defects based on generative adversarial network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(7): 18-21 (in Chinese). | |
[13] |
李可, 祁阳, 宿磊, 等. 基于改进ACGAN的钢表面缺陷视觉检测方法[J]. 机械工程学报, 2022, 58(24): 32-40.
DOI |
LI K, QI Y, SU L, et al. Visual inspection of steel surface defects based on improved auxiliary classification generation adversarial network[J]. Journal of Mechanical Engineering, 2022, 58(24): 32-40 (in Chinese).
DOI |
|
[14] | JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6: 27. |
[15] | WANG T, LI Y, KANG B Y, et al. The devil is in classification: a simple framework for long-tail instance segmentation[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 728-744. |
[16] | ZHANG Y H, HUANG C, LOY C C. FASA: feature augmentation and sampling adaptation for long-tailed instance segmentation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 3437-3446. |
[17] | CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9260-9269. |
[18] | LI B, YAO Y Q, TAN J R, et al. Equalized focal loss for dense long-tailed object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 6980-6989. |
[19] | 胡海涛, 杜昊晨, 王素琴, 等. 改进YOLOX的药品泡罩铝箔表面缺陷检测方法[J]. 图学学报, 2022, 43(5): 803-814. |
HU H T, DU H C, WANG S Q, et al. Improved YOLOX method for detecting surface defects of drug blister aluminum foil[J]. Journal of Graphics, 2022, 43(5): 803-814 (in Chinese). | |
[20] | 王健, 肖迪, 冯李航, 等. 基于改进YOLOv8s的PCB小目标缺陷检测模型[EB/OL]. (024-08-20) [2024-09-08]http://kns.cnki.net/kcms/detail/11.2127.tp.20240819.1152.016.html. |
WANG J, XIAO D, FENG L H. A PCB small object defect detection model based on improved YOLOv8s[EB/OL]. (2024-08-20) [2024-09-08]http://kns.cnki.net/kcms/detail/11.2127.tp.20240819.1152.016.html (in Chinese). | |
[21] | 李文举, 苏攀, 崔柳. 基于随机扰动的过拟合抑制算法[J]. 计算机仿真, 2022, 39(5): 134-138. |
LI W J, SU P, CUI L. Over-fitting suppression algorithm based on random perturbation[J]. Computer Simulation, 2022, 39(5): 134-138 (in Chinese). | |
[22] | LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 1763. |
[23] | TAN J R, LU X, ZHANG G, et al. Equalization loss v2: a new gradient balance approach for long-tailed object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1685-1694. |
[24] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[25] | WANG A, CHEN H, LIU L H, et al. YOLOv10:real-time end-to-end object detection[EB/OL]. (2024-10-30) [2024-12-10]https://arxiv.org/abs/2405.14458. |
[1] | ZENG Lun-jie, CHU Jun, CHEN Zhao-jun. Object detection in remote sensing image based on two-stage anchor and class balanced loss [J]. Journal of Graphics, 2023, 44(2): 249-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||