Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 249-259.DOI: 10.11996/JG.j.2095-302X.2023020249
Previous Articles Next Articles
ZENG Lun-jie1(), CHU Jun1,2(
), CHEN Zhao-jun2
Received:
2022-08-12
Accepted:
2022-10-10
Online:
2023-04-30
Published:
2023-05-01
Contact:
CHU Jun (1967-), professor, Ph.D. Her main research interests cover object detection and tracking in complex scenes. E-mail:About author:
ZENG Lun-jie (1997-), master student. His main research interests cover deep learning and object detection. E-mail:13576563600@163.com
Supported by:
CLC Number:
ZENG Lun-jie, CHU Jun, CHEN Zhao-jun. Object detection in remote sensing image based on two-stage anchor and class balanced loss[J]. Journal of Graphics, 2023, 44(2): 249-259.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020249
Fig. 1 K-means generates anchor box comparison in VOC and DIOR datasets ((a) Preset anchor frames generated by K-means under VOC datasets; (b) Preset anchor frames generated by K-means under DIOR datasets; (c) Deviation relationship between intersection and ratio of preset anchor frames under DIOR and VOC datasets)
Fig. 4 Comparison of anchor boxes generated by K-means and TK means in Dior dataset ((a) Preset anchor frames generated by TK-means under datasets; (b) Preset anchor frames generated by TK-means under DIOR datasets; (c) Deviation relationship between the intersection and ratio of two preset anchor frames and each category under DIOR dataset)
Fig. 5 Instance distribution in remote sensing datasets ((a) NWPU VHR-10 dataset category instance distribution; (b) DIOR dataset category instance distribution)
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.85 | 74.57 | 45.73 |
+ K-means | 73.92 | 81.75 | 66.45 | 73.58 | 46.39 |
+ K-means++ | 74.73 | 82.65 | 67.75 | 74.47 | 45.94 |
+TK-means (Ours) | 75.65 | 84.62 | 68.09 | 75.41 | 45.67 |
Table 1 Comparison of anchor box generated by different clustering methods (%)
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.85 | 74.57 | 45.73 |
+ K-means | 73.92 | 81.75 | 66.45 | 73.58 | 46.39 |
+ K-means++ | 74.73 | 82.65 | 67.75 | 74.47 | 45.94 |
+TK-means (Ours) | 75.65 | 84.62 | 68.09 | 75.41 | 45.67 |
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.86 | 74.57 | 45.73 |
+ Focal Loss | 73.31 | 82.88 | 67.30 | 73.38 | 45.99 |
+ EQL | 57.82 | 83.85 | 67.43 | 61.87 | 45.33 |
+ CB Loss | 11.17 | 35.26 | 41.16 | 18.08 | 46.45 |
+ CEQL (Ours) | 75.99 | 84.85 | 68.27 | 75.72 | 45.78 |
Table 2 Comparison of different loss function results (%)
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.86 | 74.57 | 45.73 |
+ Focal Loss | 73.31 | 82.88 | 67.30 | 73.38 | 45.99 |
+ EQL | 57.82 | 83.85 | 67.43 | 61.87 | 45.33 |
+ CB Loss | 11.17 | 35.26 | 41.16 | 18.08 | 46.45 |
+ CEQL (Ours) | 75.99 | 84.85 | 68.27 | 75.72 | 45.78 |
数据集 | TK-means | CEQL | APr | APc | APf | mAP |
---|---|---|---|---|---|---|
DIOR | - | - | 74.76 | 83.17 | 67.85 | 74.57 |
√ | - | 75.65 | 84.62 | 68.09 | 75.41 | |
- | √ | 75.99 | 84.85 | 68.27 | 75.72 | |
√ | √ | 76.51 | 84.53 | 68.62 | 76.13 | |
NWPU VHR-10 | - | - | 82.75 | 89.19 | 94.55 | 89.94 |
√ | - | 84.68 | 91.62 | 94.84 | 91.15 | |
- | √ | 85.06 | 92.11 | 95.12 | 91.50 | |
√ | √ | 85.72 | 93.05 | 95.04 | 91.85 |
Table 3 Ablation experiment results of different data sets (%)
数据集 | TK-means | CEQL | APr | APc | APf | mAP |
---|---|---|---|---|---|---|
DIOR | - | - | 74.76 | 83.17 | 67.85 | 74.57 |
√ | - | 75.65 | 84.62 | 68.09 | 75.41 | |
- | √ | 75.99 | 84.85 | 68.27 | 75.72 | |
√ | √ | 76.51 | 84.53 | 68.62 | 76.13 | |
NWPU VHR-10 | - | - | 82.75 | 89.19 | 94.55 | 89.94 |
√ | - | 84.68 | 91.62 | 94.84 | 91.15 | |
- | √ | 85.06 | 92.11 | 95.12 | 91.50 | |
√ | √ | 85.72 | 93.05 | 95.04 | 91.85 |
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
桥梁 | 62.25 | 76.98 | 68.79 | 59.07 | 61.88 | 67.74 | 67.18 | 62.01 |
篮球场 | 86.31 | 78.10 | 90.60 | 90.74 | 96.80 | 59.02 | 89.77 | 95.47 |
田径场 | 94.44 | 97.74 | 96.27 | 98.45 | 94.66 | 95.45 | 96.33 | 99.68 |
港口 | 89.63 | 93.70 | 93.76 | 91.15 | 96.07 | 95.33 | 91.08 | 96.66 |
船舶 | 60.47 | 78.05 | 77.84 | 87.23 | 86.70 | 80.08 | 86.51 | 89.44 |
棒球场 | 92.78 | 99.13 | 99.23 | 98.25 | 98.71 | 98.39 | 98.78 | 98.43 |
网球场 | 80.86 | 79.21 | 90.95 | 97.51 | 92.83 | 83.28 | 86.02 | 95.76 |
车辆 | 50.91 | 67.08 | 70.19 | 91.80 | 88.80 | 79.62 | 82.55 | 92.62 |
贮罐 | 59.46 | 76.11 | 76.80 | 89.90 | 96.62 | 90.27 | 92.30 | 93.09 |
飞机 | 96.99 | 98.41 | 99.65 | 95.27 | 100.00 | 99.91 | 99.82 | 95.30 |
APf | 76.20 | 83.99 | 87.36 | 94.55 | 95.39 | 90.29 | 91.89 | 95.04 |
APc | 75.05 | 85.88 | 85.80 | 89.19 | 91.39 | 87.71 | 88.80 | 93.05 |
APr | 81.00 | 84.27 | 85.22 | 82.75 | 84.45 | 74.07 | 84.43 | 85.72 |
mAP | 77.41 | 84.45 | 86.41 | 89.94 | 91.31 | 84.91 | 89.03 | 91.85 |
FPS | 18.62 | 38.56 | 37.48 | 46.84 | 48.73 | 46.16 | 43.13 | 46.47 |
Table 4 Detection accuracy of different detection algorithms and categories in NWPU VHR-10 dataset (%)
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
桥梁 | 62.25 | 76.98 | 68.79 | 59.07 | 61.88 | 67.74 | 67.18 | 62.01 |
篮球场 | 86.31 | 78.10 | 90.60 | 90.74 | 96.80 | 59.02 | 89.77 | 95.47 |
田径场 | 94.44 | 97.74 | 96.27 | 98.45 | 94.66 | 95.45 | 96.33 | 99.68 |
港口 | 89.63 | 93.70 | 93.76 | 91.15 | 96.07 | 95.33 | 91.08 | 96.66 |
船舶 | 60.47 | 78.05 | 77.84 | 87.23 | 86.70 | 80.08 | 86.51 | 89.44 |
棒球场 | 92.78 | 99.13 | 99.23 | 98.25 | 98.71 | 98.39 | 98.78 | 98.43 |
网球场 | 80.86 | 79.21 | 90.95 | 97.51 | 92.83 | 83.28 | 86.02 | 95.76 |
车辆 | 50.91 | 67.08 | 70.19 | 91.80 | 88.80 | 79.62 | 82.55 | 92.62 |
贮罐 | 59.46 | 76.11 | 76.80 | 89.90 | 96.62 | 90.27 | 92.30 | 93.09 |
飞机 | 96.99 | 98.41 | 99.65 | 95.27 | 100.00 | 99.91 | 99.82 | 95.30 |
APf | 76.20 | 83.99 | 87.36 | 94.55 | 95.39 | 90.29 | 91.89 | 95.04 |
APc | 75.05 | 85.88 | 85.80 | 89.19 | 91.39 | 87.71 | 88.80 | 93.05 |
APr | 81.00 | 84.27 | 85.22 | 82.75 | 84.45 | 74.07 | 84.43 | 85.72 |
mAP | 77.41 | 84.45 | 86.41 | 89.94 | 91.31 | 84.91 | 89.03 | 91.85 |
FPS | 18.62 | 38.56 | 37.48 | 46.84 | 48.73 | 46.16 | 43.13 | 46.47 |
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
火车站 | 60.81 | 57.07 | 55.20 | 67.56 | 68.40 | 62.97 | 62.78 | 71.82 |
大坝 | 61.99 | 59.19 | 62.40 | 71.97 | 71.25 | 67.79 | 76.80 | 74.59 |
高尔夫球场 | 82.38 | 78.27 | 78.60 | 79.52 | 82.03 | 83.97 | 82.56 | 82.49 |
体育场 | 76.12 | 54.53 | 68.40 | 62.56 | 66.97 | 58.01 | 65.11 | 66.73 |
收费站 | 53.19 | 54.15 | 62.80 | 74.58 | 79.36 | 69.01 | 63.60 | 78.01 |
机场 | 82.85 | 79.35 | 77.00 | 85.25 | 85.53 | 87.33 | 88.24 | 87.48 |
烟囱 | 76.35 | 74.11 | 73.20 | 77.99 | 79.53 | 82.51 | 82.77 | 78.27 |
服务区 | 74.09 | 69.24 | 78.60 | 87.88 | 87.94 | 90.07 | 88.57 | 88.96 |
田径场 | 68.35 | 70.93 | 76.60 | 82.73 | 82.03 | 82.66 | 81.93 | 83.37 |
立交桥 | 55.79 | 53.94 | 59.60 | 62.56 | 63.02 | 60.51 | 61.66 | 63.34 |
篮球场 | 87.24 | 86.08 | 85.00 | 88.89 | 87.57 | 87.11 | 89.20 | 89.49 |
桥梁 | 30.45 | 32.43 | 44.10 | 48.22 | 49.24 | 47.50 | 45.65 | 49.39 |
风车 | 49.08 | 74.48 | 85.50 | 85.46 | 86.23 | 84.78 | 83.85 | 86.96 |
港口 | 53.30 | 49.39 | 49.90 | 63.06 | 64.97 | 63.90 | 63.86 | 64.25 |
棒球场 | 73.38 | 77.24 | 69.30 | 83.19 | 83.98 | 76.77 | 74.44 | 82.54 |
飞机 | 52.45 | 68.76 | 53.30 | 76.60 | 79.13 | 80.41 | 77.63 | 79.00 |
网球场 | 77.42 | 84.27 | 81.30 | 89.74 | 89.55 | 90.39 | 91.32 | 90.05 |
贮罐 | 24.33 | 46.85 | 45.80 | 68.32 | 69.15 | 65.61 | 72.14 | 69.71 |
车辆 | 12.14 | 34.03 | 44.40 | 49.18 | 50.56 | 45.60 | 46.10 | 49.67 |
船舶 | 16.08 | 57.07 | 71.10 | 86.04 | 87.45 | 83.80 | 87.89 | 86.49 |
APf | 17.52 | 45.98 | 53.77 | 67.85 | 69.05 | 65.00 | 68.71 | 68.62 |
APc | 64.94 | 76.52 | 67.30 | 83.17 | 84.34 | 85.40 | 84.48 | 84.53 |
APr | 65.59 | 64.69 | 68.41 | 74.76 | 75.87 | 73.66 | 74.07 | 76.51 |
mAP | 58.39 | 63.07 | 66.11 | 74.57 | 75.69 | 73.54 | 74.31 | 76.13 |
FPS | 17.40 | 37.43 | 35.86 | 45.73 | 46.52 | 45.62 | 42.59 | 45.39 |
Table 5 Detection accuracy of different detection algorithms in DIOR dataset (%)
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
火车站 | 60.81 | 57.07 | 55.20 | 67.56 | 68.40 | 62.97 | 62.78 | 71.82 |
大坝 | 61.99 | 59.19 | 62.40 | 71.97 | 71.25 | 67.79 | 76.80 | 74.59 |
高尔夫球场 | 82.38 | 78.27 | 78.60 | 79.52 | 82.03 | 83.97 | 82.56 | 82.49 |
体育场 | 76.12 | 54.53 | 68.40 | 62.56 | 66.97 | 58.01 | 65.11 | 66.73 |
收费站 | 53.19 | 54.15 | 62.80 | 74.58 | 79.36 | 69.01 | 63.60 | 78.01 |
机场 | 82.85 | 79.35 | 77.00 | 85.25 | 85.53 | 87.33 | 88.24 | 87.48 |
烟囱 | 76.35 | 74.11 | 73.20 | 77.99 | 79.53 | 82.51 | 82.77 | 78.27 |
服务区 | 74.09 | 69.24 | 78.60 | 87.88 | 87.94 | 90.07 | 88.57 | 88.96 |
田径场 | 68.35 | 70.93 | 76.60 | 82.73 | 82.03 | 82.66 | 81.93 | 83.37 |
立交桥 | 55.79 | 53.94 | 59.60 | 62.56 | 63.02 | 60.51 | 61.66 | 63.34 |
篮球场 | 87.24 | 86.08 | 85.00 | 88.89 | 87.57 | 87.11 | 89.20 | 89.49 |
桥梁 | 30.45 | 32.43 | 44.10 | 48.22 | 49.24 | 47.50 | 45.65 | 49.39 |
风车 | 49.08 | 74.48 | 85.50 | 85.46 | 86.23 | 84.78 | 83.85 | 86.96 |
港口 | 53.30 | 49.39 | 49.90 | 63.06 | 64.97 | 63.90 | 63.86 | 64.25 |
棒球场 | 73.38 | 77.24 | 69.30 | 83.19 | 83.98 | 76.77 | 74.44 | 82.54 |
飞机 | 52.45 | 68.76 | 53.30 | 76.60 | 79.13 | 80.41 | 77.63 | 79.00 |
网球场 | 77.42 | 84.27 | 81.30 | 89.74 | 89.55 | 90.39 | 91.32 | 90.05 |
贮罐 | 24.33 | 46.85 | 45.80 | 68.32 | 69.15 | 65.61 | 72.14 | 69.71 |
车辆 | 12.14 | 34.03 | 44.40 | 49.18 | 50.56 | 45.60 | 46.10 | 49.67 |
船舶 | 16.08 | 57.07 | 71.10 | 86.04 | 87.45 | 83.80 | 87.89 | 86.49 |
APf | 17.52 | 45.98 | 53.77 | 67.85 | 69.05 | 65.00 | 68.71 | 68.62 |
APc | 64.94 | 76.52 | 67.30 | 83.17 | 84.34 | 85.40 | 84.48 | 84.53 |
APr | 65.59 | 64.69 | 68.41 | 74.76 | 75.87 | 73.66 | 74.07 | 76.51 |
mAP | 58.39 | 63.07 | 66.11 | 74.57 | 75.69 | 73.54 | 74.31 | 76.13 |
FPS | 17.40 | 37.43 | 35.86 | 45.73 | 46.52 | 45.62 | 42.59 | 45.39 |
Fig. 9 Comparison of actual detection effects ((a) Similar background scenarios; (b) Multi-category scenes; (c) Complex scenes; (d) Small target scenes)
[1] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[2] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[3] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[4] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9626-9635. |
[5] | DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6568-6577. |
[6] | 胡俊, 顾晶晶, 王秋红. 基于遥感图像的多模态小目标检测[J]. 图学学报, 2022, 43(2): 197-204. |
HU J, GU J J, WANG Q H. Multimodal small target detection based on remote sensing image[J]. Journal of Graphics, 2022, 43(2): 197-204. (in Chinese) | |
[7] | 张燕, 高鑫, 刘以, 等. 基于改进像素相关性模型的图像分割算法[J]. 图学学报, 2022, 43(2): 205-213. |
ZHANG Y, GAO X, LIU Y, et al. Image segmentation algorithm based on improved pixel correlation model[J]. Journal of Graphics, 2022, 43(2): 205-213. (in Chinese) | |
[8] | LIU M J, WANG X H, ZHOU A J, et al. UAV-YOLO: small object detection on unmanned aerial vehicle perspective[J]. Sensors: Basel, Switzerland, 2020, 20(8): 2238. |
[9] |
YANG X, SUN H, SUN X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6: 50839-50849.
DOI URL |
[10] | YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 8231-8240. |
[11] | XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3974-3983. |
[12] |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
DOI URL |
[13] |
CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
DOI URL |
[14] |
BOTÍA J A, VANDROVCOVA J, FORABOSCO P, et al. An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks[J]. BMC Systems Biology, 2017, 11(1): 47.
DOI PMID |
[15] | ZHANG Y F, KANG B Y, HOOI B, et al. Deep long-tailed learning: a survey[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2110.04596. |
[16] | KIM J, JEONG J, SHIN J. M2m: imbalanced classification via major-to-minor translation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 13893-13902. |
[17] | TAN C Q, SUN F C, KONG T, et al. A survey on deep transfer learning[M]//Artificial Neural Networks and Machine Learning - ICANN 2018. Cham: Springer International Publishing, 2018: 270-279. |
[18] | YIN X, YU X, SOHN K, et al. Feature transfer learning for face recognition with under-represented data[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5697-5706. |
[19] | ZHOU B Y, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9716-9725. |
[20] | CAI J R, WANG Y Z, HWANG J N. ACE: ally complementary experts for solving long-tailed recognition in one-shot[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 112-121. |
[21] | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 5375-5384. |
[22] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
DOI URL |
[23] | TAN J R, WANG C B, LI B Y, et al. Equalization loss for long-tailed object recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11659-11668. |
[24] | CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9260-9269. |
[25] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2004.10934. |
[26] | ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2104.11892. |
[27] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. |
[28] | 邓聪颖, 叶波, 苗建国, 等. 基于K-means++聚类与概率神经网络的数控机床变位姿动态特性模糊评估[J]. 仪器仪表学报, 2020, 41(12): 227-235. |
DENG C Y, YE B, MIAO J G, et al. Fuzzy evaluation of machine tool dynamic characteristics for changing machining position based on K-means + + clustering and probabilistic neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 227-235. (in Chinese) | |
[29] | LI Y, WANG T, KANG B Y, et al. Overcoming classifier imbalance for long-tail object detection with balanced group softmax[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10988-10997. |
[30] | GUPTA A, DOLLÁR P, GIRSHICK R. LVIS: a dataset for large vocabulary instance segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5351-5359. |
[31] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2107.08430. |
[32] | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 2778-2788. |
[33] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2022-07-06]. https://arxiv.org/abs/2207.02696. |
[1] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[2] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[3] | KANG Hou-liang , YANG Yu-ting. Automatic segmentation algorithm for text lines of Dongba hieroglyphs document image [J]. Journal of Graphics, 2022, 43(5): 865-874. |
[4] | DONG Hui, CHEN Xin-kai, SUN Hao, YAO Li-gang. Weed detection in vegetable field based on improved YOLOv4 and image processing [J]. Journal of Graphics, 2022, 43(4): 559-569. |
[5] | CHEN Zhao-jun, CHU Jun, ZENG Lun-jie. Multi category mask wearing detection based on dynamic weighted category balance loss [J]. Journal of Graphics, 2022, 43(4): 590-598. |
[6] | FAN Xin-nan, HUANG Wei-sheng, SHI Peng-fei, XIN Yuan-xue, ZHU Feng-ting, ZHOU Run-kang. Embedded substation instrument detection algorithm based on improved YOLOv4 [J]. Journal of Graphics, 2022, 43(3): 396-403. |
[7] | LI Yu-zhen, CHEN Hui, WANG Jie, RONG Wen. Landmark detection based on perspective down-sampling and neural network [J]. Journal of Graphics, 2022, 43(2): 288-295. |
[8] | LI Ni-ni, WANG Xia-li, FU Yang-yang, ZHENG Feng-xian, HE Dan-dan, YUAN Shao-xin. A traffic police object detection method based on optimized YOLO model [J]. Journal of Graphics, 2022, 43(2): 296-305. |
[9] | JIANG Rong-qi , , PENG Yue-ping , XIE Wen-xuan , XIE Guo-rong. Improved YOLOv4 small target detection algorithm with embedded scSE module [J]. Journal of Graphics, 2021, 42(4): 546-555. |
[10] | YE Ze-cong, GAO Zhi-qiang, CUI Xiao-long , JIANG Rong-qi, . Real-time gun detection method based on compressed YOLOV3 [J]. Journal of Graphics, 2021, 42(2): 198-205. |
[11] | XIA Yong-quan1, SUN Jing-ru1, WU Xin-wen2, ZHI Jun1, WANG Bing1, XIE Xi-wang1 . Star Point Clustering Based on Improved K-Means Clustering Algorithm [J]. Journal of Graphics, 2019, 40(2): 358-363. |
[12] | ZHAO Hong, XUAN Shibin. Optimization and Behavior Identification of Keyframes in Human Action Video [J]. Journal of Graphics, 2018, 39(3): 463-469. |
[13] | Duan Lili, Yuan Da, Nai Changxin. Ground Penetrating Radar Data Visualization Based on Dynamic Time Warping [J]. Journal of Graphics, 2015, 36(2): 152-158. |
[14] | Li Haiyang, Wen Yongge, He Hongzhou, Li Bolin. An Image Segmentation Algorithm Based on Random Weight Particle Swarm Optimization and K-means Clustering [J]. Journal of Graphics, 2014, 35(5): 755-761. |
[15] | Lei Hongyuan. A Study of Processing Technology of the Prints in Chinese Woodblock New Year Prints [J]. Journal of Graphics, 2014, 35(5): 809-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||