欢迎访问《图学学报》 分享到:

图学学报

• 图像与视频处理 • 上一篇    下一篇

基于 RGBD 的实时头部姿态估计

  

  1. (中国石油大学(华东)计算机与通信工程学院,山东 青岛 266580)
  • 出版日期:2019-08-31 发布日期:2019-08-30
  • 基金资助:
    基金项目:国家“863”计划主题项目子课题(2015AA016403);虚拟现实技术与系统国家重点实验室(北京航空航天大学)开放基金(BUAA-VR-15KF-13)

Real-Time Head Pose Estimation Based on RGBD

  1. (Computer and Communication Engineering, School of China University of Petroleum, Qingdao Shandong 266580, China)
  • Online:2019-08-31 Published:2019-08-30

摘要: 摘 要:实时的头部姿态估计在人机交互和人脸分析应用中起着至关重要的作用,但准确 的头部姿态估计方法依然具有一定的挑战性。为了提高头部姿态估计的准确性和鲁棒性,将基 于几何的方法与基于学习的方法相结合进行头部姿态估计。在人脸检测和人脸对齐的基础上, 提取彩色图像几何特征和深度图像的局部区域深度特征,再结合深度块的法线和曲率特征,构 成特征向量组;然后使用随机森林的方法进行训练;最后,所有决策树进行投票,对得到的头 部姿态高斯分布估计进行阈值过滤,进一步提高模型预测的准确度。实验结果表明,该方法与 现有的头部姿态估计方法相比,具有更高的准确度及鲁棒性。

关键词: 关 键 词:头部姿态估计, 随机森林, RGBD 数据, 几何特征, 深度特征

Abstract: Abstract: Real-time head pose estimation plays a crucial role in the application of human-computer interaction and face analysis, but accurate head pose estimation methods still face certain challenges. In order to improve the accuracy and robustness of the head pose estimation, this paper combines the geometry-based method and the learning-based method for head pose estimate. On the basis of face detection and face alignment, the geometric feature of the color image and the local area depth feature of the depth image are extracted, combining with the normal and curvature feature of the depth block to form the feature vector group, and then the random forest method is used to do the training. Finally, all decision trees are involved in the vote, and the resulting Gaussian distribution of the head pose is filtered by thresholds to further improve the model’s accuracy. Experimental results show that the proposed method has higher accuracy and robustness than the existing head pose estimation methods.

Key words: Keywords: head pose estimation, random forest, RGBD data, geometric feature, depth feature