[1] YE M, SHEN J, LIN G, et al. Deep learning for person
re-identification: a survey and outlook[J]. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022, 44(6):
2872-2893.
[2] 杨文娟, 王文明, 王全玉, 等. 基于感知哈希和视觉词袋模
型的图像检索方法[J]. 图学学报, 2019, 40(3): 519-524.
YANG W J, WANG W M, WANG Q Y, et al. Image retrieval
method based on perceptual hash algorithm and bag of visual
words[J]. Journal of Graphics, 2019, 40(3): 519-524 (in
Chinese).
[3] ZHAO H, TIAN M, SUN S, et al. Spindle net: person
re-identification with human body region guided feature
decomposition and fusion[C]//2017 IEEE Conference on
Computer Vision and Pattern Recognition. New York: IEEE
Press, 2017: 1077-1085.
[4] GE Y X, ZHU F, CHEN D P, et al. Self-paced contrastive
learning with hybrid memory for domain adaptive object
re-id[EB/OL]. [2021-12-08]. https://blog.csdn.net/NGUever15/
article/details/120556059.
[5] CHEN H, WANG Y, LAGADEC B. Joint generative and
contrastive learning for unsupervised person re-identification[C]//
2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. New York: IEEE Press, 2021: 2004-2013.
[6] WU A, ZHENG W, YU H, et al. RGB-infrared cross-modality
person re-identification[C]//2017 IEEE International Conference
on Computer Vision. New York: IEEE Press, 2017: 5380-5389.
[7] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//
The IEEE Conference on Computer Vision and Pattern
Recognition. New York: IEEE Press, 2018: 7132-7141.
[8] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block
attention module[C]// 2018 European Conference on Computer
Vision. Cham: Springer International Publishin, 2018: 3-19.
[9] DAI P Y, JI R R, WANG H, WU Q, el al. Cross-modality
person re-identification with generative adversarial
training[EB/OL]. [2021-12-08]. https://www.ijcai.org/Proceedings/
2018/0094.pdf.
[10] WANG Z X, WANG Z, ZHENG Y. Learning to reduce
dual-level discrepancy for infrared-visible person
re-identification[C]//2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. New York: IEEE Press, 2019:
618-626.
[11] WANG G, ZHANG T, CHENG J, et al. RGB-infrared
cross-modality person re-identification via joint pixel and
feature alignment[C]//2019 IEEE/CVF International Conference
on Computer Vision. New York: IEEE Press, 2019: 3623-3632.
[12] ZHAO Z, LIU B, CHU Q, et al. Joint color-irrelevant
consistency learning and identity-aware modality adaptation
for visible-infrared cross modality person re-identification[C]//
The AAAI Conference on Artificial Intelligence. Palo Alto:
AAAI Press, 2021: 3520-3528.
[13] YE M, LAN X, WANG Z, et al. Bi-directional centerconstrained top-ranking for visible thermal person
re-identification[C]//IEEE Transactions on Information
Pernsics and Security. New York: IEEE Press, 2020: 407-419.
[14] HAO Y, WANG N, LI J, el al. Hsme: hypersphere manifold
embedding for visible thermal person re-identification[C]//The
AAAI Conference on Artificial Intelligence. Palo Alto: AAAI
Press, 2019: 8385-8392.
[15] JIA M X, ZHAI Y P, LU S J, et al. A similarity inference
metric for RGB-infrared cross-modality person
re-identification[EB/OL]. [2021-12-08]. https://arxiv.org/abs/
2007.01504.
[16] LI D, WEI X, HONG X, el al. Infrared-visible cross-modal
person re-identification with an x modality[C]//The AAAI
Conference on Artificial Intelligence. Palo Alto: AAAI Press,
2020: 4610-4617.
[17] YE M, SHEN J, CRANDALL D, et al. Dynamic dual-attentive
aggregation learning for visible-infrared person
re-identification[C]//2020 European Conference on Computer
Vision – ECCV 2020. Cham: Springer International Publishin,
2020: 229-247.
[18] CHEN Y, WAN L, LI Z, et al. Neural feature search for
rgb-infrared person re-identification[C]//2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New
York: IEEE Press, 2021: 587-597.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning
for image recognition[EB/OL]. [2021-12-08]. https://blog.csdn.
net/toda666/article/details/80384915.
[20] LUO H, GU Y, LIAO X, et al. Bag of tricks and a strong
baseline for deep person re-identification[EB/OL]. [2021-12-08].
https://openaccess.thecvf.com/content_CVPRW_2019/papers/
TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_
Deep_Person_CVPRW_2019_paper.pdf.
[21] DALAL N, TRIGGS B. Histograms of oriented gradients for
human detection[C]//2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. New York: IEEE
Press, 2005: 886-893.
[22] NGUYEN D T, HONG H G, KIM K W, et al. Person
recognition system based on a combination of body images
from visible light and thermal cameras[J]. Sensors: Basel,
Switzerland, 2017, 17(3): E605.
[23] WANG G, ZHANG T, YANG Y, et al. Cross-modality
paired-images generation for RGB-infrared person
re-identification[C]//The AAAI Conference on Artificial
Intelligence. Palo Alto: AAAI Press, 2020: 12144-12151.
[24] DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale
hierarchical image database[C]//2009 IEEE Conference on
Computer Vision and Pattern Recognition. New York: IEEE
Press, 2009: 248-255.
[25] KINGMA D, BA J. Adam: a method for stochastic
optimization[EB/OL]. [2021-12-08]. https://arxiv.org/abs/1412.
6980.
[26] YE M, LAN X, LENG Q, et al. Cross-modality person
re-identification via modality-aware collaborative ensemble
learning[C]//2020 IEEE Transactions on Image Processing.
New York: IEEE Press, 2020: 9387-9399.
[27] LU Y, WU Y, LIU B, et al. Cross-modality person
re-identification with shared-specific feature transfer[C]//2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. New York: IEEE Press, 2020: 13376-13386.
[28] YE M, RUAN W J, DU B, et al. Channel augmented joint
learning for visible-infrared recognition[C]//2021 IEEE/CVF
International Conference on Computer Vision. New York:
IEEE Press, 2021: 13567-13576.
[29] SELVARAJU R, COGSWELL M, DAS A. Grad-cam: visual
explanations from deep networks via gradient-based
localization[J]. International Journal of Computer Vision, 2020,
128(2): 336-359.
|