[1] |
李颀, 王娇, 邓耀辉. 基于遮挡感知的行人检测与跟踪算法[J]. 传感器与微系统, 2023, 42(4): 126-130.
|
|
LI Q, WANG J, DENG Y H. Pedestrian detection and tracking algorithm based on occlusion-aware[J]. Transducer and Microsystem Technologies, 2023, 42(4): 126-130. (in Chinese)
|
[2] |
ZHANG T L, YE Q X, ZHANG B C, et al. Feature calibration network for occluded pedestrian detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4151-4163.
DOI
URL
|
[3] |
刘毅, 于畅洋, 李国燕, 等. UAST-RCNN: 遮挡行人的目标检测算法[J]. 电子测量与仪器学报, 2022, 36(12): 168-175.
|
|
LIU Y, YU C Y, LI G Y, et al. UAST-RCNN: object detection algorithm for blocking pedestrians[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(12): 168-175. (in Chinese)
|
[4] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI
PMID
|
[5] |
ZHANG Y A, HE H Y, LI J G, et al. Variational pedestrian detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11617-11626.
|
[6] |
CHU X G, ZHENG A L, ZHANG X Y, et al. Detection in crowded scenes: one proposal, multiple predictions[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 12211-12220.
|
[7] |
沙梦洲, 沈韬, 曾凯, 等. 融合深浅特征和动态选择机制的行人检测研究[J]. 数据采集与处理, 2023, 38(1): 162-173.
|
|
SHA M Z, SHEN T, ZENG K, et al. Pedestrian detection incorporating deep and shallow features and dynamic selection mechanisms[J]. Journal of Data Acquisition and Processing, 2023, 38(1): 162-173. (in Chinese)
|
[8] |
孙佩珺, 张仲荣, 李琦铭, 等. 基于改进多尺度残差网络的行人检测方法[J]. 计算机工程与设计, 2023, 44(3): 762-769.
|
|
SUN P J, ZHANG Z R, LI Q M, et al. Pedestrian detection based on improved multi-scale Res2NeXt[J]. Computer Engineering and Design, 2023, 44(3): 762-769. (in Chinese)
|
[9] |
HONG M B, LI S W, YANG Y C, et al. SSPNet: scale selection pyramid network for tiny person detection from UAV images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
[10] |
HUANG S H, LU Z C, CHENG R, et al. FaPN: feature-aligned pyramid network for dense image prediction[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 844-853.
|
[11] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2023-04-20]. https://arxiv.org/abs/1804.02767.
|
[12] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778.
|
[13] |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 764-773.
|
[14] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19.
|
[15] |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11531-11539.
|
[16] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141.
|
[17] |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10) [2023-04-20]. https://arxiv.org/abs/2112.05561.
|
[18] |
ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]// 2023 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 10323-10333.
|
[19] |
DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7369-7378.
|
[20] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007.
|
[21] |
LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 21002-21012.
|
[22] |
TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-01-24) [2023-04-20]. https://arxiv.org/abs/2301.10051.
|
[23] |
SHAO S, ZHAO Z J, LI B X, et al. CrowdHuman: a benchmark for detecting human in a crowd[EB/OL]. (2018-04-30) [2023-04-20]. https://arxiv.org/abs/1805.00123.
|
[24] |
ZHANG S F, XIE Y L, WAN J, et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2020, 22(2): 380-393.
DOI
URL
|
[25] |
ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. (2021-03-18) [2023-04-20]. https://arxiv.org/abs/2010.04159.
|
[26] |
RUKHOVICH D, SOFIIUK K, GALEEV D, et al. IterDet: iterative scheme for object detection in crowded environments[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2021: 344-354.
|
[27] |
GE Z, JIE Z Q, HUANG X, et al. PS-RCNN: detecting secondary human instances in a crowd via primary object suppression[C]// 2020 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2020: 1-6.
|