欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (6): 1112-1120.DOI: 10.11996/JG.j.2095-302X.2023061112

• 图像处理与计算机视觉 • 上一篇    下一篇

基于深度迁移学习的图像隐私目标检测研究

王大阜1(), 王静1, 石宇凯2, 邓志文1, 贾志勇1   

  1. 1.中国矿业大学图书馆,江苏 徐州 221116
    2.诸暨市融媒体中心,浙江 诸暨 311800
  • 收稿日期:2023-07-11 接受日期:2023-10-09 出版日期:2023-12-31 发布日期:2023-12-17
  • 作者简介:第一联系人:

    王大阜(1981-),男,馆员,硕士。主要研究方向为网络安全、知识图谱和推荐系统。E-mail:wdf@cumt.edu.cn

  • 基金资助:
    国家社会科学基金项目(22BTQ023)

Research on image privacy detection based on deep transfer learning

WANG Da-fu1(), WANG Jing1, SHI Yu-kai2, DENG Zhi-wen1, JIA Zhi-yong1   

  1. 1. Library of China University of Mining and Technology, Xuzhou Jiangsu 221116, China
    2. Zhuji Integrated Media Center, Zhuji Zhejiang 311800, China
  • Received:2023-07-11 Accepted:2023-10-09 Online:2023-12-31 Published:2023-12-17
  • About author:First author contact:

    WANG Da-fu (1981-), librarian, master. His main research interests are network security, knowledge graph and recommendation systems. E-mail:wdf@cumt.edu.cn

  • Supported by:
    National Social Science Foundation of China(22BTQ023)

摘要:

针对当前社交媒体平台缺乏图像隐私泄露预警机制的问题,提出基于YOLOv8模型的图像隐私目标检测优化方案,以降低用户分享图像时泄露隐私的风险。以YOLOv8作为基线模型,将瓶颈转换器(BoT)模块融入主干网络,以捕获全局上下文信息,建模长距离依赖关系。同时引入加权双向特征金字塔网络(BIFPN)结构改进颈部网络,促进多尺度特征的深度融合。在此基础上,基于深度迁移学习方法,对YOLOv8预训练模型进行微调并训练,以实现图像隐私的自动化检测。通过LabelImg标注工具构建隐私图像数据集,在迁移学习方式下,将常见的YOLO系列模型与改进的YOLOv8相比较。结果表明:YOLOv8在基线模型中的表现较好,而本文改进模型的F1值达到0.885,mAP@.5值达到0.927,相较于YOLOv8分别提升了4.0%和3.4%,其检测精度效果显著,能够应对图像隐私检测的应用场景。

关键词: 图像隐私, 目标检测, YOLOv8, 全局上下文信息, 迁移学习

Abstract:

Addressing the absence of an early warning mechanism for image privacy leakage in current social media platforms, an optimization scheme for image privacy target detection based on the YOLOv8 model was proposed, thus reducing the risk of privacy leakage when users share images. Building upon the YOLOv8 baseline model, the bottleneck transformer (BoT) module was integrated into the backbone network, capturing global contextual information and modeling long-range dependencies of targets. Concurrently, the bidirectional feature pyramid network (BiFPN) structure was introduced to improve the neck network, facilitating the deep fusion of multi-scale features. On this basis, based on the deep transfer learning method, the YOLOv8 pre-training model was fine-tuned and trained to achieve automatic detection of image privacy. A privacy image dataset was constructed using the LabelImg annotation tool, and the common YOLO series model was compared with the improved YOLOv8 in the transfer learning mode. The results demonstrated that YOLOv8 exhibited strong performance in the baseline model, while the F1 and mAP@.5 values of the improved model proposed in this study reached 0.885 and 0.927, respectively, reflecting a 4.0% and 3.4% increase compared with YOLOv8. This significantly enhanced detection accuracy was well-suited for image privacy detection in various application scenarios.

Key words: image privacy, target detection, YOLOv8, global contextual information, transfer learning

中图分类号: