[1] |
李云龙, 卿粼波, 韩龙玫, 等. 视觉可供性研究综述[J]. 计算机工程与应用, 2022, 58(18): 1-15.
DOI
|
|
LI Y L, QING L B, HAN L M, et al. Survey on visual affordance research[J]. Computer Engineering and Applications, 2022, 58(18): 1-15. (in Chinese)
DOI
|
[2] |
陈炎, 杨丽丽, 王振鹏. 双目视觉的匹配算法综述[J]. 图学学报, 2020, 41(5): 702-708.
DOI
|
|
CHEN Y, YANG L L, WANG Z P. Literature survey on stereo vision matching algorithms[J]. Journal of Graphics, 2020, 41(5): 702-708. (in Chinese)
DOI
|
[3] |
尹晨阳, 职恒辉, 李慧斌. 基于深度学习的双目立体匹配方法综述[J]. 计算机工程, 2022, 48(10): 1-12.
DOI
|
|
YIN C Y, ZHI H H, LI H B. Survey of binocular stereo-matching methods based on deep learning[J]. Computer Engineering, 2022, 48(10): 1-12. (in Chinese)
DOI
|
[4] |
MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 4040-4048.
|
[5] |
CHANG J R, CHEN Y S. Pyramid stereo matching network[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 5410-5418.
|
[6] |
GUO X Y, YANG K, YANG W K, et al. Group-wise correlation stereo network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3268-3277.
|
[7] |
XU H F, ZHANG J Y. AANet: adaptive aggregation network for efficient stereo matching[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1956-1965.
|
[8] |
CHENG X L, ZHONG Y R, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 22158-22169.
|
[9] |
LI J K, WANG P S, XIONG P F, et al. Practical stereo matching via cascaded recurrent network with adaptive correlation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 16242-16251.
|
[10] |
LIPSON L, TEED Z, DENG J. RAFT-stereo: multilevel recurrent field transforms for stereo matching[C]// 2021 International Conference on 3D Vision. New York: IEEE Press, 2022: 218-227.
|
[11] |
LIU B Y, YU H M, LONG Y Q. Local similarity pattern and cost self-reassembling for deep stereo matching networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(2): 1647-1655.
DOI
URL
|
[12] |
NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[M]// Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 483-499.
|
[13] |
李瞳, 马伟, 徐士彪, 等. 适应立体匹配任务的端到端深度网络[J]. 计算机研究与发展, 2020, 57(7): 1531-1538.
|
|
LI T, MA W, XU S B, et al. Task-adaptive end-to-end networks for stereo matching[J]. Journal of Computer Research and Development, 2020, 57(7): 1531-1538. (in Chinese)
|
[14] |
KOUTINI K, EGHBAL-ZADEH H, DORFER M, et al. The receptive field as a regularizer in deep convolutional neural networks for acoustic scene classification[C]// The 27th European Signal Processing Conference. New York: IEEE Press, 2019: 1-5.
|
[15] |
TAN M, LE Q V. MixConv: mixed depthwise convolutional kernels"[EB/OL]. [2023-01-18]. https://arxiv.org/abs/1907.09595.
|
[16] |
BULÒ S R, PORZI L, KONTSCHIEDER P. In-place activated BatchNorm for memory-optimized training of DNNs[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 5639-5647.
|
[17] |
RIDNIK T, LAWEN H, NOY A, et al. TResNet: high performance GPU-dedicated architecture[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 1399-1408.
|
[18] |
WANG Y N, GU M J, ZHU Y F, et al. Improvement of AD-census algorithm based on stereo vision[J]. Sensors, 2022, 22(18): 6933.
DOI
URL
|
[19] |
XU G W, CHENG J D, GUO P, et al. Attention concatenation volume for accurate and efficient stereo matching[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 12971-12980.
|
[20] |
KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 66-75.
|
[21] |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237.
DOI
URL
|