欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (1): 179-187.DOI: 10.11996/JG.j.2095-302X.2025010179

• 计算机图形学与虚拟现实 • 上一篇    下一篇

辐射场表面物点引导的主动视图选择

谢文想(), 许威威()   

  1. 浙江大学计算机科学与技术学院,浙江 杭州 310000
  • 收稿日期:2024-07-10 接受日期:2024-10-02 出版日期:2025-02-28 发布日期:2025-02-14
  • 通讯作者:许威威(1975-),男,教授,博士。主要研究方向为计算机图形学等。E-mail:xww@cad.zju.edu.cn
  • 第一作者:谢文想(2001-),男,硕士研究生。主要研究方向为神经渲染与建模。E-mail:zju_xwx@zju.edu.cn
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划(2023C01181)

Active view selection for radiance fields using surface object points

XIE Wenxiang(), XU Weiwei()   

  1. College of Computer Science and Technology, Zhejiang University, Hangzhou Zhejiang 310000, China
  • Received:2024-07-10 Accepted:2024-10-02 Published:2025-02-28 Online:2025-02-14
  • Contact: XU Weiwei (1975-), professor, Ph.D. His main research interests cover computer graphic, etc. E-mail:xww@cad.zju.edu.cn
  • First author:XIE Wenxiang (2001-), master student. His main research interests cover neural rendering and reconstruction. E-mail:zju_xwx@zju.edu.cn
  • Supported by:
    “Pioneer” and “Leading Goose” Research and Development Program of Zhejiang(2023C01181)

摘要:

神经辐射场(NeRF)的出现显著提高了新视图渲染和3D重建的质量,但其数据收集过程仍然依赖于人工经验,这限制了在未知环境探索和规划等任务上的应用,因此,如何有效选择最具信息增益的视图变得至关重要,为此提出了一种新的主动视图选择策略。首先,通过体渲染权重获取训练光线投射到场景表面附近的三维点,然后计算每个三维点对于候选视图的可见性,并使用光度置信度加权来衡量候选视图,最终选择可见三维点较少且置信度低的候选视图作为新的训练视图。在Blender数据集上的实验表明,与现有的方法相比,该方法在下一最佳视图和下一批最佳视图选择上分别提高了3.88 dB和5.88 dB的PSNR质量,同时视图选择速度提高近30倍。

关键词: 神经渲染, 神经辐射场, 主动视图选择, 场景感知, 未知环境探索

Abstract:

Neural radiance fields (NeRF) has significantly enhanced the quality of novel view synthesis and 3D reconstruction. However, the data collection process for NeRF training still relies on manual experience, which limits its applications in tasks such as unknown environment exploration and planning. Therefore, it becomes crucial to effectively select views with the highest information gain for training. A novel active view selection strategy was proposed to address this. Firstly, volume rendering weights were utilized to obtain 3D points near the surface of the scene where training rays were projected. Then, the visibility of each 3D point for candidate views was calculated, and photometric confidence weighting was employed to measure the candidate views. Finally, candidate views with fewer visible 3D points and lower confidence were selected as the new training views. Experiments on the Blender datasets demonstrated that our approach achieved a PSNR improvement of 3.88 dB and 5.88 dB for single-view and batch view selections, respectively, compared with existing methods, and increased view selection speed by nearly 30 times.

Key words: neural rendering, neural radiance field, active view selection, scene perception, unknown environment exploration

中图分类号: