欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1145-1164.DOI: 10.11996/JG.j.2095-302X.2024061145

• “大模型与图学技术及应用”专题 • 上一篇    下一篇

面向无人机航拍图像的目标检测研究综述

李琼1(), 考月英1(), 张莹1, 徐沛2   

  1. 1.北京市科学技术研究院信息与人工智能技术研究所,北京 100089
    2.中国科学院自动化研究所智能系统与工程研究中心,北京 100190
  • 收稿日期:2024-08-02 接受日期:2024-09-22 出版日期:2024-12-31 发布日期:2024-12-24
  • 通讯作者:考月英(1989-),女,高级工程师,博士。主要研究方向为模式识别与机器视觉等。E-mail:kaoyueying@bjast.ac.cn
  • 第一作者:李琼(1997-),女,助理研究员,硕士。主要研究方向为目标检测与识别。E-mail:liqiong@bjast.ac.cn
  • 基金资助:
    国家自然科学基金(62406030);北京市科学技术研究院财政资助项目(24CE-BGS-01);北京市科学技术研究院财政资助项目(24CA004-03);北京市科学技术研究院财政资助项目(24CB012-01);国家资助博士后研究人员计划(GZC20232995)

Review on object detection in UAV aerial images

LI Qiong1(), KAO Yueying1(), ZHANG Ying1, XU Pei2   

  1. 1. Institute of Information and Artificial Intelligence Technology, Beijing Academy of Science and Technology, Beijing 100089, China
    2. Center for Research on Intelligent System and Engineering, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2024-08-02 Accepted:2024-09-22 Published:2024-12-31 Online:2024-12-24
  • Contact: KAO Yueying (1989-), senior engineer, Ph.D. Her main research interests cover pattern recognition and machine vision, etc. E-mail:kaoyueying@bjast.ac.cn
  • First author:LI Qiong (1997-), assistant researcher, master. Her main research interests cover object detection and recognition. E-mail:liqiong@bjast.ac.cn
  • Supported by:
    National Natural Science Foundation of China(62406030);Financial Program of BJAST(24CE-BGS-01);Financial Program of BJAST(24CA004-03);Financial Program of BJAST(24CB012-01);Postdoctoral Fellowship Program of CPSF(GZC20232995)

摘要:

随着无人机和计算机视觉技术的快速发展与深度融合,面向无人机航拍图像的目标检测研究受到越来越多的关注,已广泛应用于精准农业、动物监测、城市管理、应急救援等领域。与普通视角下拍摄的图像相比,无人机航拍图像具有视野更广、目标尺寸显著缩小、视角和尺度灵活多变等特点,无法完全适用普通视角下的目标检测方法。基于此,首先详细回顾了普通视角下目标检测方法的研究进展,包括传统方法、深度学习方法和基于大模型的方法,随后综述了现有目标检测方法针对无人机航拍图像目标检测中的图像质量下降、尺度和视角变化、小目标检测难度大、复杂背景及遮挡、大视场中的不均衡,以及实时性要求高等6大难点问题提出的创新策略和优化方法。此外,归纳总结了无人机航拍图像目标检测数据集,并在2个具有代表性的数据集上对现有方法进行性能分析。最后,根据无人机航拍图像目标检测领域仍存在的问题,展望了未来可能的研究方向,为无人机航拍图像目标检测的发展和应用提供参考。

关键词: 无人机航拍图像, 深度学习, 计算机视觉, 目标检测, 多尺度目标

Abstract:

With the rapid development and deep integration of unmanned aerial vehicle (UAV) and computer vision technologies, research on object detection in UAV aerial images has gained increasing attention and has been widely applied in precision agriculture, animal monitoring, urban management, emergency rescue, and other fields. Compared to images captured from conventional perspectives, images acquired by UAVs feature a wider field of view, significantly reduced object size, and variations in viewpoint and scale, rendering conventional object detection methods inadequate. Accordingly, a detailed review of progress in object detection methods from a conventional perspective was first provided, including traditional methods, deep learning methods, and large-model-based methods. Subsequently, the innovative strategies and optimization methods proposed by existing object detection methods were summarized, specifically addressing six challenging issues specific to UAV aerial image object detection, i.e., image quality degradation, scale and viewpoint variation, small-object detection difficulty, complex background and occlusion, imbalance in large fields of view, and high real-time requirements. Additionally, UAV aerial image object detection datasets were consolidated and analyzed, with an evaluation of the performance of existing methods on two representative datasets. Finally, potential research directions for the future were outlined based on the unresolved issues in the field of UAV aerial image object detection, providing reference for the development and application of object detection in UAV aerial images.

Key words: unmanned aerial vehicle aerial image, deep learning, computer vision, object detection, multi-scale objects

中图分类号: