图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1145-1164.DOI: 10.11996/JG.j.2095-302X.2024061145
收稿日期:
2024-08-02
接受日期:
2024-09-22
出版日期:
2024-12-31
发布日期:
2024-12-24
通讯作者:
考月英(1989-),女,高级工程师,博士。主要研究方向为模式识别与机器视觉等。E-mail:kaoyueying@bjast.ac.cn第一作者:
李琼(1997-),女,助理研究员,硕士。主要研究方向为目标检测与识别。E-mail:liqiong@bjast.ac.cn
基金资助:
LI Qiong1(), KAO Yueying1(
), ZHANG Ying1, XU Pei2
Received:
2024-08-02
Accepted:
2024-09-22
Published:
2024-12-31
Online:
2024-12-24
Contact:
KAO Yueying (1989-), senior engineer, Ph.D. Her main research interests cover pattern recognition and machine vision, etc. E-mail:kaoyueying@bjast.ac.cnFirst author:
LI Qiong (1997-), assistant researcher, master. Her main research interests cover object detection and recognition. E-mail:liqiong@bjast.ac.cn
Supported by:
摘要:
随着无人机和计算机视觉技术的快速发展与深度融合,面向无人机航拍图像的目标检测研究受到越来越多的关注,已广泛应用于精准农业、动物监测、城市管理、应急救援等领域。与普通视角下拍摄的图像相比,无人机航拍图像具有视野更广、目标尺寸显著缩小、视角和尺度灵活多变等特点,无法完全适用普通视角下的目标检测方法。基于此,首先详细回顾了普通视角下目标检测方法的研究进展,包括传统方法、深度学习方法和基于大模型的方法,随后综述了现有目标检测方法针对无人机航拍图像目标检测中的图像质量下降、尺度和视角变化、小目标检测难度大、复杂背景及遮挡、大视场中的不均衡,以及实时性要求高等6大难点问题提出的创新策略和优化方法。此外,归纳总结了无人机航拍图像目标检测数据集,并在2个具有代表性的数据集上对现有方法进行性能分析。最后,根据无人机航拍图像目标检测领域仍存在的问题,展望了未来可能的研究方向,为无人机航拍图像目标检测的发展和应用提供参考。
中图分类号:
李琼, 考月英, 张莹, 徐沛. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164.
LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images[J]. Journal of Graphics, 2024, 45(6): 1145-1164.
图3 航拍图像目标检测存在的挑战[20] ((a)目标与背景占比不均衡;(b)小目标检测;(c)运动模糊;(d)目标模糊;(e)视角变化;(f)尺度变化)
Fig. 3 Challenges of object detection in aerial images[20] ((a) Unbalanced proportion between objects and background; (b) Small object detection; (c) Motion blur; (d) Blurred objects; (e) Variations in viewpoint; (f) Variations in scale)
数据集 | 图像数量/ 张 | 标注数量/ 个 | 飞行高度/m | 分辨率 | 目标类别 | 任务 | 发布时间/ 年 | 下载链接 |
---|---|---|---|---|---|---|---|---|
CARPK[ | 1 448 | 89 777 | 40 | 1280×720 | 汽车 | 车辆 计数 | 2017 | |
UAVDT[ | 80 000 | 840 000 | 10~30、 31~70、 >70 | 1080×540 | 汽车、卡车和 公共汽车 | 车辆 检测 和追踪 | 2018 | |
VisDrone[ | 8 599 | 540 000 | - | 2000×1500 | 行人、人、 汽车、面包车、 公共汽车、 卡车等10个类别 | 目标 检测 | 2018 | |
DAC-SDC[ | 150 000 | - | - | 640×360 | 人、汽车、船、 建筑等12个 大类及95个子类 | 目标 检测 | 2019 | |
AU-Air[ | 32 823 | 132 000 | 5~30 | 1920×1080 | 人、汽车、货车、 卡车、摩托车等 8个类别 | 交通 监视 | 2020 | |
UVSD[ | 5 874 | 98 600 | 10~150 | 960×540~ 5280×2970 | 车辆 | 车辆 检测 和分割 | 2020 | |
MOHR[ | 10 631 | 90 014 | 200、300 和400 | 5472×3078; 7360×4192; 8688×5792 | 建筑、汽车、 卡车、塌陷、 洪灾等5个类别 | 多尺度 目标 检测 | 2021 | / |
DroneVehicle[ | 56 878 | 819 000 | - | 840×712 | 汽车、公共汽车、 面包车、货车和 卡车等5个类别 | 车辆 检测 | 2022 | |
Manipal-UAV person detection dataset[ | 13 462 | 153 112 | 10~50 | 1280×720 | 人 | 小目标 人员 检测 | 2022 | |
SeaDroneSee[ | 54 000 | 400 000 | 5~260 | 3840×2160~ 5456×3632 | 船、救生衣、 游泳者等6个类别 | 海上 人员 检测 | 2022 | |
RTDOD[ | 32 400 | 179 672 | - | 1280×720 | 人、狗、自行车、 运动球、摩托车、 船等10个类别 | 目标 检测 | 2023 | |
WAID[ | 14 375 | - | - | 1018×572 | 羊、牛、海豹等 6个类别 | 野生 动物 监测 | 2023 | |
NVD[ | 8 450 | 26 313 | 120~250 | 1920×1080~ 3840×2160 | 车辆 | 车辆 检测 | 2023 | |
UEMM-Air[ | 20 000 | - | 5~50 | 1920×1080 | 城市、公园等 13大类场景, 上百种车型 | 车辆 检测 | 2024 | |
表1 无人机视角下的目标检测数据集
Table 1 UAV-view object detection datasets
数据集 | 图像数量/ 张 | 标注数量/ 个 | 飞行高度/m | 分辨率 | 目标类别 | 任务 | 发布时间/ 年 | 下载链接 |
---|---|---|---|---|---|---|---|---|
CARPK[ | 1 448 | 89 777 | 40 | 1280×720 | 汽车 | 车辆 计数 | 2017 | |
UAVDT[ | 80 000 | 840 000 | 10~30、 31~70、 >70 | 1080×540 | 汽车、卡车和 公共汽车 | 车辆 检测 和追踪 | 2018 | |
VisDrone[ | 8 599 | 540 000 | - | 2000×1500 | 行人、人、 汽车、面包车、 公共汽车、 卡车等10个类别 | 目标 检测 | 2018 | |
DAC-SDC[ | 150 000 | - | - | 640×360 | 人、汽车、船、 建筑等12个 大类及95个子类 | 目标 检测 | 2019 | |
AU-Air[ | 32 823 | 132 000 | 5~30 | 1920×1080 | 人、汽车、货车、 卡车、摩托车等 8个类别 | 交通 监视 | 2020 | |
UVSD[ | 5 874 | 98 600 | 10~150 | 960×540~ 5280×2970 | 车辆 | 车辆 检测 和分割 | 2020 | |
MOHR[ | 10 631 | 90 014 | 200、300 和400 | 5472×3078; 7360×4192; 8688×5792 | 建筑、汽车、 卡车、塌陷、 洪灾等5个类别 | 多尺度 目标 检测 | 2021 | / |
DroneVehicle[ | 56 878 | 819 000 | - | 840×712 | 汽车、公共汽车、 面包车、货车和 卡车等5个类别 | 车辆 检测 | 2022 | |
Manipal-UAV person detection dataset[ | 13 462 | 153 112 | 10~50 | 1280×720 | 人 | 小目标 人员 检测 | 2022 | |
SeaDroneSee[ | 54 000 | 400 000 | 5~260 | 3840×2160~ 5456×3632 | 船、救生衣、 游泳者等6个类别 | 海上 人员 检测 | 2022 | |
RTDOD[ | 32 400 | 179 672 | - | 1280×720 | 人、狗、自行车、 运动球、摩托车、 船等10个类别 | 目标 检测 | 2023 | |
WAID[ | 14 375 | - | - | 1018×572 | 羊、牛、海豹等 6个类别 | 野生 动物 监测 | 2023 | |
NVD[ | 8 450 | 26 313 | 120~250 | 1920×1080~ 3840×2160 | 车辆 | 车辆 检测 | 2023 | |
UEMM-Air[ | 20 000 | - | 5~50 | 1920×1080 | 城市、公园等 13大类场景, 上百种车型 | 车辆 检测 | 2024 | |
对应问题 | 方法 | 基础网络 | 训练/测试 | 输入尺寸/像素 | AP | AP50 | AP75 | 发表时间/年 |
---|---|---|---|---|---|---|---|---|
图像质量下降 | TRẦN等[ | FFA-Net+PAA | 23 384/2 181 | - | 12.50 | - | - | 2022 |
尺度和视角变化 | DSYOLOv3[ | YOLOv3 | 24 143 /16 592 | 608×608 | 9.80 | 23.40 | 5.00 | 2021 |
DFPN[ | - | 23 258/15 069 | 640×640 | 17.10 | 29.30 | 18.10 | 2023 | |
小目标检测 | DNOD[ | YOLOv4 | 23 258/15 069 | 1080×540 | 14.20 | 31.90 | 11.00 | 2021 |
DNOD[ | EfficientDet-D7 | 23 258/15 069 | 1080×540 | 12.90 | 32.00 | 10.90 | 2021 | |
复杂背景及遮挡 | FiFoNet[ | - | 23 258/15 069 | 最长边1536 | 21.30 | 36.80 | 22.50 | 2022 |
样本不均衡 | ClusDet[ | ResNet50 | 23 258/15 069 | 600×1000 | 13.70 | 26.50 | 12.50 | 2019 |
DMNet[ | ResNet 50 | 23 258/15 069 | 600×1000 | 14.70 | 24.60 | 16.30 | 2020 | |
BSSD[ | ResNet 101 | 23 829/16 580 | 640×640 | 19.27 | 30.71 | 19.96 | 2021 | |
BSSD[ | ResNet 101 | 23 829/16 580 | 640×640 | 18.14 | 29.37 | 19.83 | 2021 | |
DSHNet[ | ResNet-50 | 23 258/15 069 | 600×1000 | 17.80 | 30.40 | 19.70 | 2021 | |
GLSAN[ | ResNet-50 | 23 258/15 069 | 600×1000 | 19.00 | 30.50 | 21.70 | 2021 | |
UCGNet[ | Yolov5 | 23 258/15 069 | 1080×540 | 19.10 | 36.70 | 18.00 | 2021 | |
PRDet[ | ResNet-50 | 23 258/15 069 | 600×1000 | 19.80 | 34.10 | 21.30 | 2023 | |
LI等[ | DetNet-59 | 23 258/15 069 | 1080×540 | 15.30 | 29.30 | 16.20 | 2023 | |
综合改进 | NDFT[ | ResNet101 | 23 258/15 069 | 1080×540 | 52.03 | - | - | 2019 |
PENet[ | - | 23 258/15 069 | - | 67.30 | 76.30 | 74.60 | 2020 | |
UFPMP-Det[ | ResNet-50 | 23 258/15 069 | 600×1000 | 24.60 | 38.70 | 28.00 | 2022 |
表2 UAVDT数据集上的性能评估
Table 2 Performance evaluation on UAVDT dataset
对应问题 | 方法 | 基础网络 | 训练/测试 | 输入尺寸/像素 | AP | AP50 | AP75 | 发表时间/年 |
---|---|---|---|---|---|---|---|---|
图像质量下降 | TRẦN等[ | FFA-Net+PAA | 23 384/2 181 | - | 12.50 | - | - | 2022 |
尺度和视角变化 | DSYOLOv3[ | YOLOv3 | 24 143 /16 592 | 608×608 | 9.80 | 23.40 | 5.00 | 2021 |
DFPN[ | - | 23 258/15 069 | 640×640 | 17.10 | 29.30 | 18.10 | 2023 | |
小目标检测 | DNOD[ | YOLOv4 | 23 258/15 069 | 1080×540 | 14.20 | 31.90 | 11.00 | 2021 |
DNOD[ | EfficientDet-D7 | 23 258/15 069 | 1080×540 | 12.90 | 32.00 | 10.90 | 2021 | |
复杂背景及遮挡 | FiFoNet[ | - | 23 258/15 069 | 最长边1536 | 21.30 | 36.80 | 22.50 | 2022 |
样本不均衡 | ClusDet[ | ResNet50 | 23 258/15 069 | 600×1000 | 13.70 | 26.50 | 12.50 | 2019 |
DMNet[ | ResNet 50 | 23 258/15 069 | 600×1000 | 14.70 | 24.60 | 16.30 | 2020 | |
BSSD[ | ResNet 101 | 23 829/16 580 | 640×640 | 19.27 | 30.71 | 19.96 | 2021 | |
BSSD[ | ResNet 101 | 23 829/16 580 | 640×640 | 18.14 | 29.37 | 19.83 | 2021 | |
DSHNet[ | ResNet-50 | 23 258/15 069 | 600×1000 | 17.80 | 30.40 | 19.70 | 2021 | |
GLSAN[ | ResNet-50 | 23 258/15 069 | 600×1000 | 19.00 | 30.50 | 21.70 | 2021 | |
UCGNet[ | Yolov5 | 23 258/15 069 | 1080×540 | 19.10 | 36.70 | 18.00 | 2021 | |
PRDet[ | ResNet-50 | 23 258/15 069 | 600×1000 | 19.80 | 34.10 | 21.30 | 2023 | |
LI等[ | DetNet-59 | 23 258/15 069 | 1080×540 | 15.30 | 29.30 | 16.20 | 2023 | |
综合改进 | NDFT[ | ResNet101 | 23 258/15 069 | 1080×540 | 52.03 | - | - | 2019 |
PENet[ | - | 23 258/15 069 | - | 67.30 | 76.30 | 74.60 | 2020 | |
UFPMP-Det[ | ResNet-50 | 23 258/15 069 | 600×1000 | 24.60 | 38.70 | 28.00 | 2022 |
对应问题 | 方法 | 基础网络 | 训练/测试 | AP | AP50 | AP75 | AR1 | AR10 | AR100 | AR500 | 发表 时间/年 |
---|---|---|---|---|---|---|---|---|---|---|---|
图像质量下降 | DCNet[ | CenterNet | 6 471/1 610 | 29.43 | - | - | - | - | - | - | 2021 |
尺度和 视角变化 | RRNet[ | Hourglass | 6 741/1580 | 29.13 | 55.82 | 27.23 | 1.02 | 8.50 | 35.19 | 46.05 | 2019 |
SAMFR[ | DetNet-59 | 6 471/548 | 33.72 | 58.62 | 33.88 | 0.53 | 3.40 | 22.60 | 46.03 | 2019 | |
SAMFR[ | DetNet-59 | 6 471/1 580 | 20.18 | 40.03 | 18.42 | 0.46 | 3.49 | 21.60 | 30.82 | 2019 | |
ECascade-RCNN[ | Trident-FPN | 6 371/521 | 28.40 | - | - | - | - | - | - | 2021 | |
DSYOLOv3[ | YOLOv3 | 6 471/548 | 22.30 | 44.50 | 20.30 | - | - | - | - | 2021 | |
SPB-YOLO[ | YOLOv5 | 6 471/1 580 | 40.10 | - | - | - | - | - | - | 2021 | |
DFPN[ | - | 6 471/548 | 30.30 | 51.90 | 30.50 | - | - | - | - | 2023 | |
小目标检测 | Zhang等[ | ResNet50+RPN | 6 471/1 580 | 22.61 | 45.16 | 19.94 | 0.42 | 2.84 | 17.10 | 35.27 | 2019 |
MPFPN[ | ResNet-101 | 6 471/1 580 | 29.05 | 54.38 | 26.99 | 0.55 | 5.81 | 35.57 | 45.69 | 2020 | |
Jadhav等[ | ResNet-50 | 6 471/1 580 | 11.19 | 25.65 | 8.78 | 0.56 | 4.87 | 17.19 | 24.09 | 2020 | |
HRDNet[ | ResNeXt50+101 | 3 564/1 725 | 35.51 | 62.00 | 35.13 | - | - | - | - | 2021 | |
DNOD[ | YOLOv4 | 6 471/1 610 | 54.88 | - | - | - | - | - | - | 2021 | |
DNOD[ | EfficientDet-D7 | 6 471/1 610 | 53.76 | - | - | - | - | - | - | 2021 | |
Shang等[ | YOLOv5s | 6.471/1 610 | 36.40 | - | - | - | - | - | - | 2023 | |
Zhao等[ | YOLOv7 | 6 471/548 | 56.80 | - | - | - | - | - | - | 2023 | |
YOLOv7-UAV[ | YOLOv7 | - | 45.30 | - | - | - | - | - | - | 2024 | |
复杂背景 及遮挡 | D-A-FS SSD[ | VGG16 | 6 471/548 | 36.70 | - | - | - | - | - | - | 2020 |
FiFoNet[ | - | 6 471/548 | 36.91 | 63.80 | 36.11 | - | - | - | - | 2022 | |
样本不均衡 | ClusDet[ | ResNeXt101 | 6 471/548 | 32.40 | 56.20 | 31.60 | - | - | - | - | 2019 |
Hong等[ | ResNet-101 | 6.471/1 610 | 29.13 | 54.70 | 27.38 | 0.32 | 1.48 | 9.46 | 44.53 | 2019 | |
Hong等[ | ResNet-101 | 6 471/548 | 37.15 | 65.54 | 36.56 | 0.32 | 1.47 | 7.28 | 53.78 | 2019 | |
CRENet[ | Hourglass-104 | 6 471/548 | 33.70 | 54.30 | 33.50 | - | - | - | - | 2020 | |
DMNet[ | ResNeXt 101 | 6 471/548 | 29.40 | 49.30 | 30.60 | - | - | - | - | 2020 | |
DSHNet[ | ResNet-50 | 6 471/548 | 30.30 | 51.80 | 30.90 | - | - | - | - | 2021 | |
GLSAN[ | ResNet-50 | 6 471/548 | 32.50 | 55.80 | 33.00 | - | - | - | - | 2021 | |
UCGNet[ | Yolov5 | 6 471/548 | 32.80 | 53.10 | 33.90 | - | - | - | - | 2021 | |
VAMYOLOX[ | Darknet53 | 6 471/548 | 29.40 | 47.00 | - | - | - | - | - | 2023 | |
PRDet[ | ResNeXt-101 | 6 471/548 | 40.20 | 62.00 | 43.50 | - | - | - | - | 2023 | |
Li等[ | DetNet59 | 6 471/548 | 31.40 | 54.50 | 27.30 | - | - | - | - | 2023 | |
实时检测 | SlimYOLOv3[ | YOLOv3 | 6 471/548 | 23.90 | - | - | - | - | - | - | 2019 |
LAI-YOLOv5s[ | YOLOv5 | 6 471/548 | - | 40.40 | - | - | - | - | - | 2023 | |
Cao等[ | YOLOv5 | 6 471/549 | 27.70 | 46.90 | - | - | - | - | - | 2023 | |
综合改进 | NDFT[ | ResNet101 | 6 471/548 | 52.77 | - | - | - | - | 2019 | ||
PENet[ | - | 6 471/548 | 41.10 | 58.00 | 44.30 | - | - | - | - | 2020 | |
SyNet[ | CenterNet | 6 471/1580 | 25.10 | 48.40 | 26.20 | - | - | - | - | 2021 | |
UFPMP-Det[ | ResNeXt-101 | 6 471/548 | 40.10 | 66.80 | 41.30 | - | - | - | - | 2022 | |
YOLO-UAV[ | YOLOv5l | 6 471/548 | 30.50 | - | - | - | - | 2022 | |||
YOLOv7X+[ | YOLOV7 | 6 471/548 | - | 60.30 | - | - | - | - | - | 2023 |
表3 VisDrone数据集上的性能评估
Table 3 Performance evaluation on VisDrone dataset
对应问题 | 方法 | 基础网络 | 训练/测试 | AP | AP50 | AP75 | AR1 | AR10 | AR100 | AR500 | 发表 时间/年 |
---|---|---|---|---|---|---|---|---|---|---|---|
图像质量下降 | DCNet[ | CenterNet | 6 471/1 610 | 29.43 | - | - | - | - | - | - | 2021 |
尺度和 视角变化 | RRNet[ | Hourglass | 6 741/1580 | 29.13 | 55.82 | 27.23 | 1.02 | 8.50 | 35.19 | 46.05 | 2019 |
SAMFR[ | DetNet-59 | 6 471/548 | 33.72 | 58.62 | 33.88 | 0.53 | 3.40 | 22.60 | 46.03 | 2019 | |
SAMFR[ | DetNet-59 | 6 471/1 580 | 20.18 | 40.03 | 18.42 | 0.46 | 3.49 | 21.60 | 30.82 | 2019 | |
ECascade-RCNN[ | Trident-FPN | 6 371/521 | 28.40 | - | - | - | - | - | - | 2021 | |
DSYOLOv3[ | YOLOv3 | 6 471/548 | 22.30 | 44.50 | 20.30 | - | - | - | - | 2021 | |
SPB-YOLO[ | YOLOv5 | 6 471/1 580 | 40.10 | - | - | - | - | - | - | 2021 | |
DFPN[ | - | 6 471/548 | 30.30 | 51.90 | 30.50 | - | - | - | - | 2023 | |
小目标检测 | Zhang等[ | ResNet50+RPN | 6 471/1 580 | 22.61 | 45.16 | 19.94 | 0.42 | 2.84 | 17.10 | 35.27 | 2019 |
MPFPN[ | ResNet-101 | 6 471/1 580 | 29.05 | 54.38 | 26.99 | 0.55 | 5.81 | 35.57 | 45.69 | 2020 | |
Jadhav等[ | ResNet-50 | 6 471/1 580 | 11.19 | 25.65 | 8.78 | 0.56 | 4.87 | 17.19 | 24.09 | 2020 | |
HRDNet[ | ResNeXt50+101 | 3 564/1 725 | 35.51 | 62.00 | 35.13 | - | - | - | - | 2021 | |
DNOD[ | YOLOv4 | 6 471/1 610 | 54.88 | - | - | - | - | - | - | 2021 | |
DNOD[ | EfficientDet-D7 | 6 471/1 610 | 53.76 | - | - | - | - | - | - | 2021 | |
Shang等[ | YOLOv5s | 6.471/1 610 | 36.40 | - | - | - | - | - | - | 2023 | |
Zhao等[ | YOLOv7 | 6 471/548 | 56.80 | - | - | - | - | - | - | 2023 | |
YOLOv7-UAV[ | YOLOv7 | - | 45.30 | - | - | - | - | - | - | 2024 | |
复杂背景 及遮挡 | D-A-FS SSD[ | VGG16 | 6 471/548 | 36.70 | - | - | - | - | - | - | 2020 |
FiFoNet[ | - | 6 471/548 | 36.91 | 63.80 | 36.11 | - | - | - | - | 2022 | |
样本不均衡 | ClusDet[ | ResNeXt101 | 6 471/548 | 32.40 | 56.20 | 31.60 | - | - | - | - | 2019 |
Hong等[ | ResNet-101 | 6.471/1 610 | 29.13 | 54.70 | 27.38 | 0.32 | 1.48 | 9.46 | 44.53 | 2019 | |
Hong等[ | ResNet-101 | 6 471/548 | 37.15 | 65.54 | 36.56 | 0.32 | 1.47 | 7.28 | 53.78 | 2019 | |
CRENet[ | Hourglass-104 | 6 471/548 | 33.70 | 54.30 | 33.50 | - | - | - | - | 2020 | |
DMNet[ | ResNeXt 101 | 6 471/548 | 29.40 | 49.30 | 30.60 | - | - | - | - | 2020 | |
DSHNet[ | ResNet-50 | 6 471/548 | 30.30 | 51.80 | 30.90 | - | - | - | - | 2021 | |
GLSAN[ | ResNet-50 | 6 471/548 | 32.50 | 55.80 | 33.00 | - | - | - | - | 2021 | |
UCGNet[ | Yolov5 | 6 471/548 | 32.80 | 53.10 | 33.90 | - | - | - | - | 2021 | |
VAMYOLOX[ | Darknet53 | 6 471/548 | 29.40 | 47.00 | - | - | - | - | - | 2023 | |
PRDet[ | ResNeXt-101 | 6 471/548 | 40.20 | 62.00 | 43.50 | - | - | - | - | 2023 | |
Li等[ | DetNet59 | 6 471/548 | 31.40 | 54.50 | 27.30 | - | - | - | - | 2023 | |
实时检测 | SlimYOLOv3[ | YOLOv3 | 6 471/548 | 23.90 | - | - | - | - | - | - | 2019 |
LAI-YOLOv5s[ | YOLOv5 | 6 471/548 | - | 40.40 | - | - | - | - | - | 2023 | |
Cao等[ | YOLOv5 | 6 471/549 | 27.70 | 46.90 | - | - | - | - | - | 2023 | |
综合改进 | NDFT[ | ResNet101 | 6 471/548 | 52.77 | - | - | - | - | 2019 | ||
PENet[ | - | 6 471/548 | 41.10 | 58.00 | 44.30 | - | - | - | - | 2020 | |
SyNet[ | CenterNet | 6 471/1580 | 25.10 | 48.40 | 26.20 | - | - | - | - | 2021 | |
UFPMP-Det[ | ResNeXt-101 | 6 471/548 | 40.10 | 66.80 | 41.30 | - | - | - | - | 2022 | |
YOLO-UAV[ | YOLOv5l | 6 471/548 | 30.50 | - | - | - | - | 2022 | |||
YOLOv7X+[ | YOLOV7 | 6 471/548 | - | 60.30 | - | - | - | - | - | 2023 |
[1] | LIU L, OUYANG W L, WANG X G, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318. |
[2] | ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276. |
[3] | MOHSAN S A H, KHAN M A, NOOR F, et al. Towards the unmanned aerial vehicles (UAVs): a comprehensive review[J]. Drones, 2022, 6(6): 147. |
[4] | KANELLAKIS C, NIKOLAKOPOULOS G. Survey on computer vision for UAVs: current developments and trends[J]. Journal of Intelligent & Robotic Systems, 2017, 87(1): 141-168. |
[5] | CHEN C J, HUANG Y Y, LI Y S, et al. Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying[J]. IEEE Access, 2021, 9: 21986-21997. |
[6] | PROSEKOV A, VESNINA A, ATUCHIN V, et al. Robust algorithms for drone-assisted monitoring of big animals in harsh conditions of Siberian winter forests: recovery of European elk (Alces alces) in Salair mountains[J]. Animals, 2022, 12(12): 1483. |
[7] | CHEN Y F, ZHENG W Q, ZHAO Y Y, et al. DW-YOLO: an efficient object detector for drones and self-driving vehicles[J]. Arabian Journal for Science and Engineering, 2023, 48(2): 1427-1436. |
[8] | LYGOURAS E, SANTAVAS N, TAITZOGLOU A, et al. Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations[J]. Sensors, 2019, 19(16): 3542. |
[9] | MITTAL P, SINGH R, SHARMA A. Deep learning-based object detection in low-altitude UAV datasets: a survey[J]. Image and Vision Computing, 2020, 104: 104046. |
[10] | WU X, LI W, HONG D F, et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: a survey[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 91-124. |
[11] | RAMACHANDRAN A, SANGAIAH A K. A review on object detection in unmanned aerial vehicle surveillance[J]. International Journal of Cognitive Computing in Engineering, 2021, 2: 215-228. |
[12] | BABARYKA A, KATERYNCHUK I, KLYMASH M, et al. Deep learning methods application for object detection tasks using unmanned aerial vehicles[C]// 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering. New York: IEEE Press, 2022: 808-811. |
[13] | TANG G Y, NI J J, ZHAO Y H, et al. A survey of object detection for UAVs based on deep learning[J]. Remote Sensing, 2023, 16(1): 149. |
[14] | SU J Y, ZHU X Y, LI S H, et al. AI meets UAVs: a survey on AI empowered UAV perception systems for precision agriculture[J]. Neurocomputing, 2023, 518: 242-270. |
[15] | BOUGUETTAYA A, ZARZOUR H, KECHIDA A, et al. Deep learning techniques to classify agricultural crops through UAV imagery: a review[J]. Neural Computing and Applications, 2022, 34(12): 9511-9536. |
[16] | SRIVASTAVA S, NARAYAN S, MITTAL S. A survey of deep learning techniques for vehicle detection from UAV images[J]. Journal of Systems Architecture, 2021, 117: 102152. |
[17] | DOLL O, LOOS A. Comparison of object detection algorithms for livestock monitoring of sheep in UAV images[C]// Workshop Camera Traps, AI, and Ecology. Cham: Springer, 2023: 1-7. |
[18] | ZHAO C J, LIU R W, QU J X, et al. Deep learning-based object detection in maritime unmanned aerial vehicle imagery: review and experimental comparisons[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107513. |
[19] | DASMEHDIXTR. Drone Dataset (UAV)[EB/OL]. [2024-07-23]. https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav?select=drone_dataset_yolo. |
[20] | LIU H H, YU Y H, LIU S Z, et al. A military object detection model of UAV reconnaissance image and feature visualization[J]. Applied Sciences, 2022, 12(23): 12236. |
[21] | TENG S Z, ZHANG S L, HUANG Q M, et al. Viewpoint and scale consistency reinforcement for UAV vehicle re-identification[J]. International Journal of Computer Vision, 2021, 129(3): 719-735. |
[22] | TIAN G Y, LIU J R, ZHAO H, et al. Small object detection via dual inspection mechanism for UAV visual images[J]. Applied Intelligence, 2022, 52(4): 4244-4257. |
[23] | WANG C Y, SHI Z R, MENG L L, et al. Anti-occlusion UAV tracking algorithm with a low-altitude complex background by integrating attention mechanism[J]. Drones, 2022, 6(6): 149. |
[24] | SHAN P, YANG R G, XIAO H M, et al. UAVPNet: a balanced and enhanced UAV object detection and pose recognition network[J]. Measurement, 2023, 222: 113654. |
[25] |
李斌, 张彩霞, 杨阳, 等. 复杂场景下深度表示的无人机目标检测算法[J]. 计算机工程与应用, 2020, 56(15): 118-123.
DOI |
LI B, ZHANG C X, YANG Y, et al. Drone target detection algorithm for depth representation in complex scene[J]. Journal of Computer Engineering and Applications, 2020, 56(15): 118-123. (in Chinese) | |
[26] | CAO Z, KOOISTRA L, WANG W S, et al. Real-time object detection based on UAV remote sensing: a systematic literature review[J]. Drones, 2023, 7(10): 620. |
[27] | YE T, QIN W Y, ZHAO Z Y, et al. Real-time object detection network in UAV-vision based on CNN and transformer[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2505713. |
[28] | ZHU P F, WEN L Y, DU D W, et al. VisDrone-DET2018: the vision meets drone object detection in image challenge results[C]// The European Conference on Computer Vision Workshops. Cham: Springer, 2019: 437-468. |
[29] | WU X W, SAHOO D, HOI S C H. Recent advances in deep learning for object detection[J]. Neurocomputing, 2020, 396: 39-64. |
[30] | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of Computer Vision, 2004, 60(2): 91-110. |
[31] | BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359. |
[32] | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2005: 886-893. |
[33] | FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2008: 1-8. |
[34] | FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. |
[35] | HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and their Applications, 1998, 13(4): 18-28. |
[36] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[37] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI PMID |
[38] | GIRSHICK R. Fast R-CNN[C]// The IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1440-1448. |
[39] | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// The 28th International Conference on Neural Information Processing Systems. New York: ACM, 2015: 91-99. |
[40] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[41] | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[42] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[43] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[44] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. |
[45] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2024-06-01]. https://arxiv.org/abs/1804.02767. |
[46] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2024-06-01]. https://arxiv.org/abs/2004.10934. |
[47] | Ultralytics. YOLOv5 in PyTorch[EB/OL]. [2024-07-23]. https://github.com/ultralytics/yolov5. |
[48] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2024-06-01]. https://arxiv.org/abs/2209.02976. |
[49] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[50] | Ultralytics. YOLOv8[EB/OL]. [2024-07-23]. https://docs.ultralytics.com/zh/models/yolov8/. |
[51] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. (2024-02-29)[2024-06-01]. https://arxiv.org/abs/2402.13616. |
[52] | WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. (2024-05-23) [2024-06-01]. https://arxiv.org/abs/2405.14458. |
[53] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// The 14th European Conference on Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. |
[54] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. (2017-01-23)[2024-06-01]. https://arxiv.org/abs/1701.06659. |
[55] | LI Z X, YANG L, ZHOU F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. (2024-02-23) [2024-06-01]. https://arxiv.org/abs/1712.00960. |
[56] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007. |
[57] | LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 765-781. |
[58] | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-25)[2024-06-01]. https://arxiv.org/abs/1904.07850. |
[59] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10778-10787. |
[60] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. |
[61] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. |
[62] | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. [2024-06-01]. https://dblp.uni-trier.de/db/conf/iclr/iclr2021.html#ZhuSLLWD21. |
[63] | ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 16965-16974. |
[64] | YAO J, YI X J, WANG X T, et al. From instructions to intrinsic human values--a survey of alignment goals for big models[EB/OL]. (2023-11-04) [2024-06-01]. https://arxiv.org/abs/2308.12014. |
[65] | LI L H, ZHANG P C, ZHANG H T, et al. Grounded language-image pre-training[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10955-10965. |
[66] | LIU S L, ZENG Z Y, REN T H, et al. Grounding DINO: marrying DINO with grounded pre-training for open-set object detection[EB/OL]. (2024-07-19) [2024-06-01]. https://arxiv.org/abs/2303.05499. |
[67] | KAUL P, XIE W D, ZISSERMAN A. Multi-modal classifiers for open-vocabulary object detection[EB/OL]. [2024-06-01]. https://dl.acm.org/doi/10.5555/3618408.3619063. |
[68] | ZANG Y H, LI W, HAN J, et al. Contextual object detection with multimodal large language models[EB/OL]. (2024-08-12) [2024-06-01]. https://arxiv.org/abs/2305.18279. |
[69] | XU Y F, ZHANG M D, FU C Y, et al. Multi-modal queried object detection in the wild[C]// The 37th International Conference on Neural Information Processing Systems. New York: ACM, 2023: 198. |
[70] | ZHAO T, NEVATIA R. Car detection in low resolution aerial images[J]. Image and Vision Computing, 2003, 21(8): 693-703. |
[71] | KLUCKNER S, PACHER G, GRABNER H, et al. A 3D teacher for car detection in aerial images[C]// 2007 IEEE 11th International Conference on Computer Vision. New York: IEEE Press, 2007: 1-8. |
[72] | MORANDUZZO T, MELGANI F. A SIFT-SVM method for detecting cars in UAV images[C]// 2012 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE Press, 2012: 6868-6871. |
[73] | MORANDUZZO T, MELGANI F. Automatic car counting method for unmanned aerial vehicle images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1635-1647. |
[74] | STOKKEL X L X. Detecting humans from a top-down perspective using an unmanned aerial vehicle[D]. Groningen: University of Groningen, 2015. |
[75] | MORANDUZZO T, MELGANI F, BAZI Y, et al. A fast object detector based on high-order gradients and Gaussian process regression for UAV images[J]. International Journal of Remote Sensing, 2015, 36(10): 2713-2733. |
[76] | XU Y Z, YU G Z, WANG Y P, et al. A hybrid vehicle detection method based on Viola-Jones and HOG + SVM from UAV images[J]. Sensors, 2016, 16(8): 1325. |
[77] | WANG Y R, ZHU X L, WU B. Automatic detection of individual oil palm trees from UAV images using HOG features and an SVM classifier[J]. International Journal of Remote Sensing, 2019, 40(19): 7356-7370. |
[78] | MAIRE F, ALVAREZ L M, HODGSON A. Automating marine mammal detection in aerial images captured during wildlife surveys: a deep learning approach[C]// The 28th Australasian Joint Conference on AI 2015:Advances in Artificial Intelligence. Cham: Springer, 2015: 379-385. |
[79] | AMMOUR N, ALHICHRI H, BAZI Y, et al. Deep learning approach for car detection in UAV imagery[J]. Remote Sensing, 2017, 9(4): 312. |
[80] | LI C L, SUN X M, CAI J H. Intelligent mobile drone system based on real-time object detection[J]. Journal on Artificial Intelligence, 2019, 1(1): 1-8. |
[81] | HONG S J, HAN Y, KIM S Y, et al. Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery[J]. Sensors, 2019, 19(7): 1651. |
[82] | MAKAROV S B, PAVLOV V A, BEZBORODOV A K, et al. Multiple object tracking using convolutional neural network on aerial imagery sequences[C]// International Youth Conference on Electronics, Telecommunications and Information Technologies. Cham: Springer, 2021: 413-420. |
[83] | CHENG Z, CHEN J Y, ZHANG X, et al. Comparative study of two target detection algorithms in UAV aerial photography detection[C]// The 12th International Conference on Information Optics and Photonics. Bellingham: SPIE, 2021, 12057: 889-894. |
[84] | ZHU J Q, ZHONG J T, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: 103991. |
[85] | KU C, CHEN X Z, CHEN Y L. Robust object detection model for UAV application[C]// 2023 International Automatic Control Conference. New York: IEEE Press, 2023: 1-5. |
[86] | WANG W J, PENG Y P, CAO G Z, et al. Low-illumination image enhancement for night-time UAV pedestrian detection[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5208-5217. |
[87] | WANG J S, YANG Y, CHEN Y, et al. LighterGAN: an illumination enhancement method for urban UAV imagery[J]. Remote Sensing, 2021, 13(7): 1371. |
[88] | LIU Y, WANG J W, QIU T T, et al. An adaptive deblurring vehicle detection method for high-speed moving drones: resistance to shake[J]. Entropy, 2021, 23(10): 1358. |
[89] | WANG X Q. Vehicle image detection method using deep learning in UAV video[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 8202535. |
[90] | MINH T T, VAN BAO T, NGUYEN V D, et al. An object detection method for aerial hazy images[J]. Can Tho University Journal of Science, 2022, 14(1): 91-98. |
[91] | QIN X, WANG Z L, BAI Y C, et al. FFA-Net: feature fusion attention network for single image dehazing[C]// The 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 11908-11915. |
[92] | KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 355-371. |
[93] | ZHANG L M, WANG G F, CHEN M, et al. An enhanced noise-tolerant hashing for drone object detection[J]. Pattern Recognition, 2023, 143: 109762. |
[94] | ZHU B Y, LV Q B, TAN Z. Adaptive multi-scale fusion blind deblurred generative adversarial network method for sharpening image data[J]. Drones, 2023, 7(2): 96. |
[95] | CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. |
[96] | DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 2844-2853. |
[97] | PAN X J, REN Y Q, SHENG K K, et al. Dynamic refinement network for oriented and densely packed object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11204-11213. |
[98] | CHEN C R, ZHANG Y, LV Q X, et al. RRNet: a hybrid detector for object detection in drone-captured images[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 100-108. |
[99] | WANG H R, WANG Z X, JIA M X, et al. Spatial attention for multi-scale feature refinement for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 64-72. |
[100] | LIN Q Z, DING Y, XU H, et al. ECascade-RCNN: enhanced cascade RCNN for multi-scale object detection in UAV images[C]// 2021 7th International Conference on Automation, Robotics and Applications. New York: IEEE Press, 2021: 268-272. |
[101] | LI Z K, LIU X L, ZHAO Y, et al. A lightweight multi-scale aggregated model for detecting aerial images captured by UAVs[J]. Journal of Visual Communication and Image Representation, 2021, 77: 103058. |
[102] | WANG X R, LI W H, GUO W, et al. SPB-YOLO: an efficient real-time detector for unmanned aerial vehicle images[C]// 2021 International Conference on Artificial Intelligence in Information and Communication. New York: IEEE Press, 2021: 99-104. |
[103] | SUN H K, CHEN Y X, LU X B, et al. Decoupled feature pyramid learning for multi-scale object detection in low-altitude remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6556-6567. |
[104] | ZHANG Y Z, WU C Y, ZHANG T, et al. Full-scale feature aggregation and grouping feature reconstruction-based UAV Image target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5621411. |
[105] | LIU F, YAO L, ZHANG C Y, et al. Scale-invariant feature disentanglement via adversarial learning for UAV-based object detection[EB/OL]. (2024-05-31) [2024-06-01]. https://arxiv.org/abs/2405.15465. |
[106] | LIANG X, ZHANG J, ZHUO L, et al. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(6): 1758-1770. |
[107] | ZHANG X D, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 118-126. |
[108] | LIU Y J, YANG F B, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J]. IEEE Access, 2020, 8: 145740-145750. |
[109] | JADHAV A, MUKHERJEE P, KAUSHIK V, et al. Aerial multi-object tracking by detection using deep association networks[C]// 2020 National Conference on Communications. New York: IEEE Press, 2020: 1-6. |
[110] | LIU Z M, GAO G Y, SUN L, et al. HRDNet: high-resolution detection network for small objects[C]// 2021 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2021: 1-6. |
[111] | TIAN G Y, LIU J R, YANG W Y. A dual neural network for object detection in UAV images[J]. Neurocomputing, 2021, 443: 292-301. |
[112] | SHANG J C, WANG J S, LIU S B, et al. Small target detection algorithm for UAV aerial photography based on improved YOLOv5s[J]. Electronics, 2023, 12(11): 2434. |
[113] | ZHAO D W, SHAO F M, LIU Q, et al. A small object detection method for drone-captured images based on improved YOLOv7[J]. Remote Sensing, 2024, 16(6): 1002. |
[114] | LI X M, WEI Y K, LI J H, et al. Improved YOLOv7 algorithm for small object detection in unmanned aerial vehicle image scenarios[J]. Applied Sciences, 2024, 14(4): 1664. |
[115] |
YANG J X, XIE X M, YANG W Z. Effective contexts for UAV vehicle detection[J]. IEEE Access, 2019, 7: 85042-85054.
DOI |
[116] | ZHANG W, LIU C S, CHANG F L, et al. Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images[J]. Remote Sensing, 2020, 12(11): 1760. |
[117] | LIU Y Z, DING Z M, CAO Y, et al. Multi-scale feature fusion UAV image object detection method based on dilated convolution and attention mechanism[C]// 2020 8th International Conference on Information Technology:IoT and Smart City. New York: ACM, 2020: 125-132. |
[118] | CAI Y Q, DU D W, ZHANG L B, et al. Guided attention network for object detection and counting on drones[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 709-717. |
[119] | XI Y, JIA W J, MIAO Q G, et al. FiFoNet: fine-grained target focusing network for object detection in UAV images[J]. Remote Sensing, 2022, 14(16): 3919. |
[120] | LI C L, YANG T J N, ZHU S J, et al. Density map guided object detection in aerial images[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 737-746. |
[121] | LI X H, LI X D, LI Z J, et al. Robust vehicle detection in high-resolution aerial images with imbalanced data[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(3): 238-250. |
[122] | SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 761-769. |
[123] | YANG Y H, GAO X Z, WANG Y, et al. VAMYOLOX: an accurate and efficient object detection algorithm based on visual attention mechanism for UAV optical sensors[J]. IEEE Sensors Journal, 2023, 23(11): 11139-11155. |
[124] | LENG J X, MO M J C, ZHOU Y H, et al. Pareto refocusing for drone-view object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(3): 1320-1334. |
[125] | HONG S, KANG S, CHO D. Patch-level augmentation for object detection in aerial images[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 127-134. |
[126] | YU W P, YANG T J N, CHEN C. Towards resolving the challenge of long-tail distribution in UAV images for object detection[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 3257-3266. |
[127] | YAMANI A, ALYAMI A, LUQMAN H, et al. Active learning for single-stage object detection in UAV images[C]// 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2024: 1849-1858. |
[128] | HOU X Y, ZHANG K L, XU J H, et al. Object detection in drone imagery via sample balance strategies and local feature enhancement[J]. Applied Sciences, 2021, 11(8): 3547. |
[129] | YANG F, FAN H, CHU P, et al. Clustered object detection in aerial images[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 8310-8319. |
[130] | WANG Y, YANG Y L, ZHAO X. Object detection using clustering algorithm adaptive searching regions in aerial images[C]// European Conference on Computer Vision. Cham: Springer, 2020: 651-664. |
[131] |
DENG S T, LI S, XIE K, et al. A global-local self-adaptive network for drone-view object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 1556-1569.
DOI PMID |
[132] | LIAO J J, PIAO Y C, SU J H, et al. Unsupervised cluster guided object detection in aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11204-11216. |
[133] | LI G X, WANG X J, LI Y, et al. Adaptive clustering object detection method for UAV images under long-tailed distributions[J]. Information Technology and Control, 2023, 52(4): 1025-1044. |
[134] | KYRKOU C, PLASTIRAS G, THEOCHARIDES T, et al. DroNet: efficient convolutional neural network detector for real-time UAV applications[C]// 2018 Design, Automation & Test in Europe Conference & Exhibition. New York: IEEE Press, 2018: 967-972. |
[135] | ZHANG P Y, ZHONG Y X, LI X Q. SlimYOLOv3: narrower, faster and better for real-time UAV applications[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 37-45. |
[136] | LI M L, ZHAO X K, LI J S, et al. ComNet: combinational neural network for object detection in UAV-borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6662-6673. |
[137] | DONG J, OTA K, DONG M X. Real-time survivor detection in UAV thermal imagery based on deep learning[C]// 2020 16th International Conference on Mobility, Sensing and Networking. New York: IEEE Press, 2020: 352-359. |
[138] | WANG S Y, ZHAO J, TA N, et al. A real-time deep learning forest fire monitoring algorithm based on an improved Pruned + KD model[J]. Journal of Real-Time Image Processing, 2021, 18(6): 2319-2329. |
[139] | QIN Z W, WANG W S, DAMMER K H, et al. Ag-YOLO: a real-time low-cost detector for precise spraying with case study of palms[J]. Frontiers in Plant Science, 2021, 12: 753603. |
[140] |
DENG L X, BI L Y, LI H Q, et al. Lightweight aerial image object detection algorithm based on improved YOLOv5s[J]. Scientific Reports, 2023, 13(1): 7817.
DOI PMID |
[141] | CAO L J, SONG P D, WANG Y C, et al. An improved lightweight real-time detection algorithm based on the edge computing platform for UAV images[J]. Electronics, 2023, 12(10): 2274. |
[142] | WU Z Y, SURESH K, NARAYANAN P, et al. Delving into robust object detection from unmanned aerial vehicles: a deep nuisance disentanglement approach[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1201-1210. |
[143] | TANG Z Y, LIU X, SHEN G Y, et al. PENet: object detection using points estimation in aerial images[EB/OL]. (2020-01-22)[2024-06-01]. https://arxiv.org/abs/2001.08247. |
[144] | ALBABA B M, OZER S. SyNet: an ensemble network for object detection in UAV images[C]// 2020 25th International Conference on Pattern Recognition. New York: IEEE Press, 2021: 10227-10234. |
[145] | HUANG Y C, CHEN J X, HUANG D. UFPMP-Det: toward accurate and efficient object detection on drone imagery[C]// The 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 1026-1033. |
[146] | LUO X D, WU Y Q, WANG F Y. Target detection method of UAV aerial imagery based on improved YOLOv5[J]. Remote Sensing, 2022, 14(19): 5063. |
[147] | LI S Q, LIU W S. Small target detection model in aerial images based on YOLOv7X+[J]. Engineering Letters, 2024, 32(2): 436-443. |
[148] | HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 4165-4173. |
[149] | DU D W, QI Y K, YU H Y, et al. The unmanned aerial vehicle benchmark: object detection and tracking[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 375-391. |
[150] | ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399. |
[151] | DU D W, ZHU P F, WEN L Y, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 213-226. |
[152] | CAO Y R, HE Z Y, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 2847-2854. |
[153] | XU X W, ZHANG X Y, YU B, et al. DAC-SDC low power object detection challenge for UAV applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 392-403. |
[154] | BOZCAN I, KAYACAN E. AU-AIR: a multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance[C]// 2020 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2020: 8504-8510. |
[155] | ZHANG H J, SUN M S, LI Q, et al. An empirical study of multi-scale object detection in high resolution UAV images[J]. Neurocomputing, 2021, 421: 173-182. |
[156] | SUN Y M, CAO B, ZHU P F, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty-aware learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6700-6713. |
[157] | AKSHATHA K R, KARUNAKAR A K, SHENOY B S, et al. Manipal-UAV person detection dataset: a step towards benchmarking dataset and algorithms for small object detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 77-89. |
[158] | VARGA L A, KIEFER B, MESSMER M, et al. SeaDronesSee: a maritime benchmark for detecting humans in open water[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 3686-3696. |
[159] | FENG H T, ZHANG L, ZHANG S Q, et al. RTDOD: a large-scale RGB-thermal domain-incremental object detection dataset for UAVs[J]. Image and Vision Computing, 2023, 140: 104856. |
[160] | MOU C, LIU T F, ZHU C C, et al. WAID: a large-scale dataset for wildlife detection with drones[J]. Applied Sciences, 2023, 13(18): 10397. |
[161] | MOKAYED H, NAYEBIASTANEH A, DE K, et al. Nordic Vehicle Dataset (NVD): performance of vehicle detectors using newly captured NVD from UAV in different snowy weather conditions[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 5314-5322. |
[162] | LIU F, YAO L, XU S X, et al. UEMM-Air: a synthetic multi-modal dataset for unmanned aerial vehicle object detection[EB/OL]. [2024-07-01]. https://arxiv.org/abs/2406.06230. |
[163] |
李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
DOI |
LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666. (in Chinese) |
[1] | 刘冀辰, 李金星, 吴佳, 张威, 齐宇诺, 周国亮. 大模型技术在电力行业的应用展望[J]. 图学学报, 2024, 45(6): 1132-1144. |
[2] | 刘灿锋, 孙浩, 东辉. 结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究[J]. 图学学报, 2024, 45(6): 1256-1265. |
[3] | 宋思程, 陈辰, 李晨辉, 王长波. 基于密度图多目标追踪的时空数据可视化[J]. 图学学报, 2024, 45(6): 1289-1300. |
[4] | 李珍峰, 符世琛, 徐乐, 孟博, 张昕, 秦建军. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312. |
[5] | 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337. |
[6] | 王宗继, 刘云飞, 陆峰. Cloud Sphere: 一种基于渐进式变形自编码的三维模型表征方法[J]. 图学学报, 2024, 45(6): 1375-1388. |
[7] | 许丹丹, 崔勇, 张世倩, 刘雨聪, 林予松. 优化医学影像三维渲染可视化效果:技术综述[J]. 图学学报, 2024, 45(5): 879-891. |
[8] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[9] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[10] | 吴沛宸, 袁立宁, 胡皓, 刘钊, 郭放. 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[11] | 翟永杰, 李佳蔚, 陈年昊, 王乾铭, 王新颖. 融合改进Transformer的车辆部件检测方法[J]. 图学学报, 2024, 45(5): 930-940. |
[12] | 姜晓恒, 段金忠, 卢洋, 崔丽莎, 徐明亮. 融合先验知识推理的表面缺陷检测[J]. 图学学报, 2024, 45(5): 957-967. |
[13] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[14] | 熊超, 王云艳, 罗雨浩. 特征对齐与上下文引导的多视图三维重建[J]. 图学学报, 2024, 45(5): 1008-1016. |
[15] | 李建华, 韩宇, 石开铭, 张可嘉, 郭红领, 方东平, 曹佳明. 施工现场小目标工人检测方法[J]. 图学学报, 2024, 45(5): 1040-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||