图学学报 ›› 2024, Vol. 45 ›› Issue (5): 979-986.DOI: 10.11996/JG.j.2095-302X.2024050979
收稿日期:2024-06-10
修回日期:2024-09-05
出版日期:2024-10-31
发布日期:2024-10-31
第一作者:李刚(1980-),男,副教授,博士。主要研究方向为电力人工智能、电力视觉。E-mail:ququ_er2003@126.com
基金资助:
LI Gang1,2(
), CAI Zehao1, SUN Huaxun3, ZHAO Zhenbing2
Received:2024-06-10
Revised:2024-09-05
Published:2024-10-31
Online:2024-10-31
First author:LI Gang (1980-), associate professor, Ph.D. His main research interests cover AI for power system and electric power vision. E-mail:ququ_er2003@126.com
Supported by:摘要:
针对输电线路螺栓金具缺陷检测任务中存在的缺陷样本类间分布不均、缺陷微小特征提取困难等问题,提出基于改进YOLOv8和语义知识融合的输电线路螺栓缺陷检测方法。首先,通过深入分析数据样本中螺栓金具缺陷种类与该螺栓承载金具种类之间的关系,完成语义关联构建工作;之后,在YOLOv8模型Neck部分引入BiFusion和RepBlock模块,增强模型的特征提取能力;其次,使用改进的融合语义知识校正权重的Loss函数,进一步提高训练模型的准确性,减少误检的发生;最后,分别完成基线选取实验、消融实验、超参数调整实验以及对比实验。实验结果表明,相较于Baseline模型,改进YOLOv8方法在平均精确率(mAP)上提升了4.0%,在关键少样本类精确率上提升了24.6%,可有效提高输电线路螺栓金具缺陷检测的效果,该语义关联构建及语义知识融合方法具有一定的泛用性,为输电线路无人机智能巡检领域提供了新的方法支持。
中图分类号:
李刚, 蔡泽浩, 孙华勋, 赵振兵. 基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究[J]. 图学学报, 2024, 45(5): 979-986.
LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion[J]. Journal of Graphics, 2024, 45(5): 979-986.
| 标签名称 | Wire1 | Wire2 | Wire3 | Insulator1 | Insulator2 | Insulator3 | Insulator4 | Insulator5 | Insulator6 | U |
|---|---|---|---|---|---|---|---|---|---|---|
| B@front@normal | 260 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A@front@normal | 156 | 48 | 0 | 103 | 118 | 13 | 25 | 47 | 3 | 14 |
| A@sideB@normal | 28 | 24 | 1 | 104 | 18 | 128 | 18 | 54 | 27 | 12 |
| A@sideA@normal | 10 | 12 | 0 | 58 | 2 | 103 | 10 | 19 | 12 | 166 |
| A@sideAB@errorA | 520 | 1 | 4 | 23 | 20 | 76 | 4 | 6 | 7 | 27 |
| A@front@error_A | 94 | 41 | 0 | 53 | 12 | 3 | 2 | 1 | 0 | 9 |
| A@sideB@error_B | 2 | 1 | 0 | 10 | 3 | 14 | 1 | 5 | 3 | 0 |
| A@front@error_B | 6 | 4 | 0 | 19 | 9 | 1 | 3 | 2 | 0 | 0 |
| B@front@error_B | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B@front@error_C | 106 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
表1 承载金具及缺陷类型分布统计
Table 1 Distribution statistics of load-bearing fittings and defect types
| 标签名称 | Wire1 | Wire2 | Wire3 | Insulator1 | Insulator2 | Insulator3 | Insulator4 | Insulator5 | Insulator6 | U |
|---|---|---|---|---|---|---|---|---|---|---|
| B@front@normal | 260 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A@front@normal | 156 | 48 | 0 | 103 | 118 | 13 | 25 | 47 | 3 | 14 |
| A@sideB@normal | 28 | 24 | 1 | 104 | 18 | 128 | 18 | 54 | 27 | 12 |
| A@sideA@normal | 10 | 12 | 0 | 58 | 2 | 103 | 10 | 19 | 12 | 166 |
| A@sideAB@errorA | 520 | 1 | 4 | 23 | 20 | 76 | 4 | 6 | 7 | 27 |
| A@front@error_A | 94 | 41 | 0 | 53 | 12 | 3 | 2 | 1 | 0 | 9 |
| A@sideB@error_B | 2 | 1 | 0 | 10 | 3 | 14 | 1 | 5 | 3 | 0 |
| A@front@error_B | 6 | 4 | 0 | 19 | 9 | 1 | 3 | 2 | 0 | 0 |
| B@front@error_B | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B@front@error_C | 106 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 名称 | 型号 |
|---|---|
| 操作系统 | Windows 10家庭版 |
| 显示适配器 | GeForce RTX 4060 12 G |
| CUDA | 11.6 |
| Python | 3.8 |
| Pytorch | 1.13.1 |
| Torchvision | 0.14.1 |
| Batch size | 8 |
| Epoch | 200 |
表2 实验环境
Table 2 Experimental environment
| 名称 | 型号 |
|---|---|
| 操作系统 | Windows 10家庭版 |
| 显示适配器 | GeForce RTX 4060 12 G |
| CUDA | 11.6 |
| Python | 3.8 |
| Pytorch | 1.13.1 |
| Torchvision | 0.14.1 |
| Batch size | 8 |
| Epoch | 200 |
| 缺陷种类 | 样本数量 | 标签名称 |
|---|---|---|
| 正常 | 263 | B@front@normal |
| 527 | A@front@normal | |
| 414 | A@side_B@normal | |
| 392 | A@side_A@normal | |
| 销子缺失 | 688 | A@side_AB@error_A |
| 215 | A@front@error_A | |
| 销子失效 | 39 | A@side_B@error_B |
| 44 | A@front@error_B | |
| 180 | B@front@error_B | |
| 垫片缺失 | 134 | B@front@error_C |
表3 数据集标签分类及统计
Table 3 Classification and statistics ofdataset labels
| 缺陷种类 | 样本数量 | 标签名称 |
|---|---|---|
| 正常 | 263 | B@front@normal |
| 527 | A@front@normal | |
| 414 | A@side_B@normal | |
| 392 | A@side_A@normal | |
| 销子缺失 | 688 | A@side_AB@error_A |
| 215 | A@front@error_A | |
| 销子失效 | 39 | A@side_B@error_B |
| 44 | A@front@error_B | |
| 180 | B@front@error_B | |
| 垫片缺失 | 134 | B@front@error_C |
| Model | mAP/% | FPS | GFLOPs |
|---|---|---|---|
| YOLOv8n | 81.5 | 342.4 | 12.0 |
| YOLOv8s | 84.8 | 154.8 | 42.5 |
| YOLOv8m | 84.8 | 70.0 | 110.0 |
| YOLOv8l | 84.0 | 45.7 | 220.2 |
| YOLOv8x | 85.9 | 30.1 | 343.7 |
表4 基线模型训练结果
Table 4 Baseline model training results
| Model | mAP/% | FPS | GFLOPs |
|---|---|---|---|
| YOLOv8n | 81.5 | 342.4 | 12.0 |
| YOLOv8s | 84.8 | 154.8 | 42.5 |
| YOLOv8m | 84.8 | 70.0 | 110.0 |
| YOLOv8l | 84.0 | 45.7 | 220.2 |
| YOLOv8x | 85.9 | 30.1 | 343.7 |
| YOLOV8s | 改进1 | 改进2 | AP/% | mAP/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||||
| √ | - | - | 99.5 | 89.4 | 98.4 | 92.9 | 89.4 | 81.5 | 91.4 | 40.0 | 65.5 | 99.5 | 84.8 |
| √ | √ | - | 98.2 | 86.5 | 96.5 | 95.1 | 87.0 | 81.0 | 93.3 | 48.3 | 72.0 | 99.5 | 85.8 |
| √ | - | √ | 98.1 | 87.3 | 97.7 | 95.1 | 90.0 | 80.9 | 97.5 | 36.5 | 79.4 | 99.5 | 86.2 |
| √ | √ | √ | 98.5 | 87.8 | 99.0 | 97.1 | 89.5 | 87.5 | 90.9 | 55.2 | 65.4 | 99.5 | 87.0 |
表5 消融实验结果
Table 5 Ablation test results
| YOLOV8s | 改进1 | 改进2 | AP/% | mAP/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||||
| √ | - | - | 99.5 | 89.4 | 98.4 | 92.9 | 89.4 | 81.5 | 91.4 | 40.0 | 65.5 | 99.5 | 84.8 |
| √ | √ | - | 98.2 | 86.5 | 96.5 | 95.1 | 87.0 | 81.0 | 93.3 | 48.3 | 72.0 | 99.5 | 85.8 |
| √ | - | √ | 98.1 | 87.3 | 97.7 | 95.1 | 90.0 | 80.9 | 97.5 | 36.5 | 79.4 | 99.5 | 86.2 |
| √ | √ | √ | 98.5 | 87.8 | 99.0 | 97.1 | 89.5 | 87.5 | 90.9 | 55.2 | 65.4 | 99.5 | 87.0 |
| α取值 | AP/% | mAP/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
| 2.7 | 99.5 | 87.7 | 98.0 | 95.3 | 87.0 | 84.7 | 95.3 | 43.5 | 58.3 | 99.5 | 84.9 |
| 2.8 | 96.9 | 91.6 | 96.3 | 95.4 | 92.8 | 87.7 | 97.0 | 47.7 | 64.2 | 99.5 | 86.9 |
| 2.9 | 99.3 | 90.0 | 98.1 | 95.2 | 90.4 | 87.2 | 99.5 | 47.9 | 65.5 | 99.5 | 87.3 |
| 3.0 | 98.4 | 90.5 | 98.9 | 95.8 | 91.9 | 91.2 | 90.7 | 64.6 | 66.9 | 99.5 | 88.8 |
| 3.5 | 96.7 | 92.5 | 99.3 | 96.7 | 93.8 | 86.9 | 90.3 | 47.1 | 65.0 | 99.5 | 86.8 |
| 4.0 | 96.7 | 89.6 | 98.6 | 97.5 | 94.2 | 85.6 | 93.0 | 43.3 | 74.6 | 99.5 | 87.3 |
表6 超参数调整实验结果
Table 6 Experimental results of hyperparameter adjustment
| α取值 | AP/% | mAP/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
| 2.7 | 99.5 | 87.7 | 98.0 | 95.3 | 87.0 | 84.7 | 95.3 | 43.5 | 58.3 | 99.5 | 84.9 |
| 2.8 | 96.9 | 91.6 | 96.3 | 95.4 | 92.8 | 87.7 | 97.0 | 47.7 | 64.2 | 99.5 | 86.9 |
| 2.9 | 99.3 | 90.0 | 98.1 | 95.2 | 90.4 | 87.2 | 99.5 | 47.9 | 65.5 | 99.5 | 87.3 |
| 3.0 | 98.4 | 90.5 | 98.9 | 95.8 | 91.9 | 91.2 | 90.7 | 64.6 | 66.9 | 99.5 | 88.8 |
| 3.5 | 96.7 | 92.5 | 99.3 | 96.7 | 93.8 | 86.9 | 90.3 | 47.1 | 65.0 | 99.5 | 86.8 |
| 4.0 | 96.7 | 89.6 | 98.6 | 97.5 | 94.2 | 85.6 | 93.0 | 43.3 | 74.6 | 99.5 | 87.3 |
| 模型名称 | AP/% | mAP/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
| YOLOv5 | 97.0 | 85.2 | 96.4 | 90.0 | 88.9 | 86.8 | 90.6 | 54 | 63.7 | 99.5 | 85.2 |
| YOLOv5改进后 | 97.2 | 85.3 | 96.7 | 92.6 | 87.9 | 80.6 | 91.5 | 65.8 | 67.4 | 99.5 | 86.4 |
| YOLOv3 | 98.0 | 91.3 | 98.1 | 94.7 | 87.0 | 79.9 | 96.5 | 32.6 | 64.6 | 99.5 | 84.2 |
| YOLOv3改进后 | 99.0 | 88.9 | 96.8 | 94.0 | 93.1 | 83.0 | 99.5 | 41.7 | 70.0 | 99.5 | 86.5 |
| YOLOv8+AIFI | 98.0 | 86.3 | 98.7 | 93.6 | 92.1 | 85.6 | 93.2 | 19.9 | 67.4 | 99.5 | 83.4 |
| YOLOv8+DAttention | 99.1 | 86.3 | 96.3 | 95.3 | 88.5 | 81.1 | 97.9 | 16.6 | 35.4 | 99.5 | 79.6 |
| YOLOv8+GoldYolo | 93.0 | 88.8 | 97.3 | 93.1 | 84.4 | 72.8 | 93.2 | 28.9 | 62.9 | 99.5 | 81.4 |
表7 对比实验结果
Table 7 Comparative experimental results
| 模型名称 | AP/% | mAP/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
| YOLOv5 | 97.0 | 85.2 | 96.4 | 90.0 | 88.9 | 86.8 | 90.6 | 54 | 63.7 | 99.5 | 85.2 |
| YOLOv5改进后 | 97.2 | 85.3 | 96.7 | 92.6 | 87.9 | 80.6 | 91.5 | 65.8 | 67.4 | 99.5 | 86.4 |
| YOLOv3 | 98.0 | 91.3 | 98.1 | 94.7 | 87.0 | 79.9 | 96.5 | 32.6 | 64.6 | 99.5 | 84.2 |
| YOLOv3改进后 | 99.0 | 88.9 | 96.8 | 94.0 | 93.1 | 83.0 | 99.5 | 41.7 | 70.0 | 99.5 | 86.5 |
| YOLOv8+AIFI | 98.0 | 86.3 | 98.7 | 93.6 | 92.1 | 85.6 | 93.2 | 19.9 | 67.4 | 99.5 | 83.4 |
| YOLOv8+DAttention | 99.1 | 86.3 | 96.3 | 95.3 | 88.5 | 81.1 | 97.9 | 16.6 | 35.4 | 99.5 | 79.6 |
| YOLOv8+GoldYolo | 93.0 | 88.8 | 97.3 | 93.1 | 84.4 | 72.8 | 93.2 | 28.9 | 62.9 | 99.5 | 81.4 |
| [1] |
赵振兵, 张薇, 翟永杰, 等. 电力视觉技术的概念、研究现状与展望[J]. 电力科学与工程, 2020, 36(1): 1-8.
DOI |
| ZHAO Z B, ZHANG W, ZHAI Y J, et al. Concept, research status and prospect of electric power vision technology[J]. Electric Power Science and Engineering, 2020, 36(1): 1-8 (in Chinese). | |
| [2] | 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. |
| ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560 (in Chinese). | |
| [3] | 赵振兵, 王睿, 赵文清, 等. 基于图知识推理的输电线路缺销螺栓识别方法[J]. 智能系统学报, 2023, 18(2): 372-380. |
| ZHAO Z B, WANG R, ZHAO W Q, et al. Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2): 372-380 (in Chinese). | |
| [4] |
翟永杰, 郭聪彬, 王乾铭, 等. 基于隐含空间知识融合的输电线路多金具检测方法[J]. 图学学报, 2023, 44(5): 918-927.
DOI |
| ZHAI Y J, GUO C B, WANG Q M, et al. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion[J]. Journal of Graphics, 2023, 44(5): 918-927 (in Chinese). | |
| [5] | 王亚茹, 冯利龙, 宋晓轲, 等. TFD-YOLOv8: 一种用于输电线路的异物检测方法[EB/OL]. [2024-07-24]. http://kns.cnki.net/kcms/detail/10.1034.T.20240703.1534.002.html. |
| WANG YR, FENG LL, SONG XK, et al. TFD-YOLOv8: a transmission line foreign object detection method[EB/OL]. [2024-07-24]. http://kns.cnki.net/kcms/detail/10.1034.T.20240 703.1534.002.html (in Chinese). | |
| [6] | LIU S, LIU L W, SHANG F, et al. Research and implementation of birds and floating objects target detection technology in transmission lines[C]// 2022 10th IEEE Joint International Information Technology and Artificial Intelligence Conference. New York: IEEE Press, 2022: 2528-2532. |
| [7] | BI Z Q, JING L N, SUN C, et al. YOLOX++ for transmission line abnormal target detection[J]. IEEE Access, 2023, 11: 38157-38167. |
| [8] | 张珂, 周睿恒, 石超君, 等. 自监督E-Swin的输电线路金具检测[J]. 中国图象图形学报, 2023, 28(10): 3064-3076. |
| ZHANG K, ZHOU R H, SHI C J, et al. Self-supervised E-Swin based transmission line fittings detection[J]. Journal of Image and Graphics, 2023, 28(10): 3064-3076 (in Chinese). | |
| [9] | CHEN D Q, GUOX H, HUANGP, et al. Safety distance analysis of 500kV transmission line tower UAV patrol inspection[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 124-128. |
| [10] | 苟军年, 杜愫愫, 王世铎, 等. 轻量化特征融合的CenterNet输电线路绝缘子自爆缺陷检测[J]. 北京航空航天大学学报, 2024, 50(7): 2161-2171. |
| GOU J N, DU SS, WANG S D, et al. Insulator self-explosion detection in transmission line based on CenterNet fusing lightweight features[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2161-2171 (in Chinese). | |
| [11] | YANG Q F, ZHANG Z Q, YAN L, et al. Lightweight Bird's nest location recognition method based on YOLOv4- tiny[C]// 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology. New York: IEEE Press, 2021: 402-405. |
| [12] | 赵振兵, 熊静, 徐厚东, 等. 融合结构推理的深度模型输电线路金具及其缺陷检测[J]. 高电压技术, 2023, 49(8): 3346-3353. |
| ZHAO Z B, XIONG J, XU H D, et al. Integrating structural reasoning for deep model transmission line fittings and their defects detection[J]. High Voltage Engineering, 2023, 49(8): 3346-3353 (in Chinese). | |
| [13] | 戚银城, 耿劭锋, 赵振兵, 等. 基于特征迁移的螺栓图像超分辨率处理方法[J]. 智能系统学报, 2023, 18(4): 858-866. |
| QIY C, GENG S F, ZHAO Z B, et al. A method for super resolution processing of bolt image based on feature transfer[J]. CAAI Transactions on Intelligent Systems, 2023, 18(4): 858-866 (in Chinese). | |
| [14] |
李刚, 张运涛, 汪文凯, 等. 采用DETR与先验知识融合的输电线路螺栓缺陷检测方法[J]. 图学学报, 2023, 44(3): 438-447.
DOI |
|
LI G, ZHANG Y T, WANG W K, et al. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion[J]. Journal of Graphics, 2023, 44(3): 438-447 (in Chinese).
DOI |
|
| [15] | 刘起源, 路锦正, 黄炳森. 基于特征融合和损失优化的点云语义分割网络[J]. 计算机技术与发展, 2024, 34(5): 66-72. |
| LIUQ Y, LU J Z, HUANG B S. Point cloud semantic segmentation network based on feature fusion and loss optimization[J]. Computer Technology and Development, 2024, 34(5): 66-72 (in Chinese). | |
| [16] | 骆俊锋. 结合高层语义与底层颜色特征的图像检索方法[J]. 电子元器件与信息技术, 2021, 5(3): 188-190. |
| LUO J F. Image retrieval method combining high-level semantics and low-level color features[J]. Electronic Component and Information Technology, 2021, 5(3): 188-190 (in Chinese). | |
| [17] | 禹鑫燚, 林密, 卢江平, 等. 基于向量叉乘标签分配的遥感图像目标检测算法[J]. 高技术通讯, 2024, 34(2): 132-142. |
| YU X Y, LIN M, LU J P, et al. Remote sensing object detection algorithm based on vector cross product label assignment[J]. Chinese High Technology Letters, 2024, 34(2): 132-142 (in Chinese). | |
| [18] | CHEN P Y, HSIEH J W, WANG C Y, et al. Residual Bi-fusion feature pyramid network for accurate single-shot object detection[EB/OL]. [2024-04-10]. https://arxiv.org/abs/1911.12051. |
| [19] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-01-12]. https://arxiv.org/abs/2209.02976. |
| [1] | 李珍峰, 符世琛, 徐乐, 孟博, 张昕, 秦建军. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312. |
| [2] | 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337. |
| [3] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
| [4] | 王亚茹, 冯利龙, 宋晓轲, 屈卓, 杨珂, 王乾铭, 翟永杰. TFD-YOLOv8:一种用于输电线路的异物检测方法[J]. 图学学报, 2024, 45(5): 901-912. |
| [5] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
| [6] | 胡欣, 常娅姝, 秦皓, 肖剑, 程鸿亮. 基于改进YOLOv8和GMM图像点集匹配的双目测距方法[J]. 图学学报, 2024, 45(4): 714-725. |
| [7] | 牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735. |
| [8] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
| [9] | 武兵, 田莹. 基于注意力机制的多尺度道路损伤检测算法研究[J]. 图学学报, 2024, 45(4): 770-778. |
| [10] | 朱强军, 胡斌, 汪慧兰, 王杨. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432. |
| [11] | 崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125. |
| [12] | 王大阜, 王静, 石宇凯, 邓志文, 贾志勇. 基于深度迁移学习的图像隐私目标检测研究[J]. 图学学报, 2023, 44(6): 1112-1120. |
| [13] | 高昂, 梁兴柱, 夏晨星, 张春炯. 一种改进YOLOv8的密集行人检测算法[J]. 图学学报, 2023, 44(5): 890-898. |
| [14] | 李刚, 张运涛, 汪文凯, 张东阳. 采用DETR与先验知识融合的输电线路螺栓缺陷检测方法[J]. 图学学报, 2023, 44(3): 438-447. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||