欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (4): 864-873.DOI: 10.11996/JG.j.2095-302X.2025040864

• 数字化设计与制造 • 上一篇    下一篇

基于数据挖掘与深度语义模型的工艺序列推荐方法

郑佳辉(), 郭宇, 吴涛, 王胜博, 黄少华(), 郑凯文   

  1. 南京航空航天大学机电学院,江苏 南京 210016
  • 收稿日期:2024-09-25 修回日期:2024-12-26 出版日期:2025-08-30 发布日期:2025-08-11
  • 通讯作者:黄少华(1990-),男,讲师,博士。主要研究方向为大数据,物联网,智能决策等。E-mail:shaohuah@nuaa.edu.cn
  • 第一作者:郑佳辉(2000-),男,硕士。主要研究方向为智能制造、数字化制造和人工智能。E-mail:zheng_jiahui@nuaa.edu.cn
  • 基金资助:
    中国航空科学基金资助项目(2023M043052001)

Data mining and deep structured semantic model-based process sequence recommendation method

ZHENG Jiahui(), GUO Yu, WU Tao, WANG Shengbo, HUANG Shaohua(), ZHENG Kaiwen   

  1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu 210016, China
  • Received:2024-09-25 Revised:2024-12-26 Published:2025-08-30 Online:2025-08-11
  • First author:ZHENG Jiahui (2000-), master student. His main research interests cover intelligent manufacturing, digital manufacturing and artificial intelligence. E-mail:zheng_jiahui@nuaa.edu.cn
  • Supported by:
    China Aeronautical Science Foundation(2023M043052001)

摘要:

为了应对航空制造工艺设计中传统的“经验驱动”方法面临的“数据超载”问题,难以实现航空复杂零件的智能化工艺设计,提出一种基于数据挖掘与深度语义模型的工艺序列推荐方法。通过采用PrefixSpan算法与BERT大语言模型相结合从零件实例数据中挖掘典型制造工艺序列及其相关能力,构建了可重用、可更新的制造工艺知识库。在此基础上,针对航空制造数据的特点提出了一种改进的空间通道注意力机制,进行零件实例数据隐式特征提取,同时针对零件实例不均衡分布导致的“冷启动”问题,结合自监督学习挖掘数据的深层结构,保证模型泛化能力和小样本实例的学习能力。通过基于双通道注意力的深度语义模型与自监督学习相结合的方法,使得模型在数据不平衡的情况下更好地提取特征、学习知识以及准确地推荐更加符合航空工艺设计的工艺序列。以某航空零件为例,进行了制造工艺序列的推荐与验证。实验结果表明,该方法在制造工艺序列推荐的各项指标上均优于基准模型,验证了该方法的有效性,且能满足航空工艺设计人员的智能化工艺设计需求。

关键词: 数据挖掘, 自监督学习, 深度语义模型, 航空复杂零件, 制造序列推荐

Abstract:

To address the challenge of “data overload” encountered with traditional “experience-driven” methods in aerospace manufacturing process designs, we propose a process sequence recommendation method based on data mining and deep semantic models. This method integrates the PrefixSpan algorithm and BERT to extract typical manufacturing process sequences and their associated capabilities from component instance data, thereby constructing a reusable and updatable manufacturing process knowledge base. Building on this foundation, an enhanced spatial channel attention mechanism is introduced to accommodate the characteristics of aerospace manufacturing data, enabling implicit feature extraction form part instance data. Additionally, to mitigate the “cold start” issue caused by the uneven component instance distribution, self-supervised learning is employed to uncover the deep structure of the data, thereby ensuring the model’s generalization ability and improving its capability to learn from small sample instances. By combining a dual-channel attention-based deep semantic model with self-supervised learning, this approach effectively extract features, acquire knowledge, and accurately recommend process sequences suitable for aerospace manufacturing, even in the presence of data imbalance. Finally, a case study involving a specific aerospace component was conducted to validate the proposed method. Experimental results demonstrate that this method consistently outperforms benchmark models across various metrics in manufacturing process sequence recommendation, confirming its effectiveness and fulfilling the intelligent process design requirements of aerospace engineers.

Key words: data mining, self-supervised learning, deep semantic models, aviation complex parts, manufacturing sequence recommendation

中图分类号: