[1] |
汤文俊, 王裴岩, 蔡东风, 等. 基于编码器—解码器的工艺过程生成方法[J]. 计算机集成制造系统, 2023, 29(11): 3656-3668.
|
|
TANG W J, WANG P Y, CAI D F, et al. Encoder-decoder based process generation method[J]. Computer Integrated Manufacturing System, 2023, 29(11): 3656-3668 (in Chinese).
|
[2] |
张一鸣, 刘金锋, 陈亚杰, 等. 零件加工隐性工艺知识获取方法研究[J]. 图学学报, 2024, 45(2): 399-408.
DOI
|
|
ZHANG Y M, LIU J F, CHEN Y J, et al. Tacit process knowledge acquisition methods for the parts machining[J]. Journal of Graphics, 2024, 45(2): 399-408 (in Chinese).
DOI
|
[3] |
何柳, 安然, 刘姝妍, 等. 基于知识图谱的航空多模态数据组织与知识发现技术研究[J]. 图学学报, 2024, 45(2): 300-307.
DOI
|
|
HE L, AN R, LIU S Y, et al. Research on knowledge graph-based aviation multi-modal data organization and discovery method[J]. Journal of Graphics, 2024, 45(2): 300-307 (in Chinese).
DOI
|
[4] |
冯锦丹, 何楠, 刘金山, 等. 基于知识驱动的航天复杂产品装配工艺重构方法[J]. 计算机集成制造系统, 2024, 30(12): 4314-4327.
|
|
FEN J D, HE N, LIU J H, et al. Knowledge-driven assembly process reconfiguration method for aerospace complex products[J]. Computer Integrated Manufacturing Systems, 2024, 30(12): 4314-4327 (in Chinese).
|
[5] |
曹勇. 基于数据挖掘的工艺知识发现与重用研究[D]. 济南: 山东大学, 2019.
|
|
CAO Y. Research on process knowledge discovering and reusing based on data mining[D]. Jinan: Shandong University, 2019 (in Chinese).
|
[6] |
SAXENA A, PRASAD M, GUPTA A, et al. A review of clustering techniques and developments[J]. Neurocomputing, 2017, 267: 664-681.
|
[7] |
ZHAO C X, DINAR M, MELKOTE S N. A data-driven framework for learning the capability of manufacturing process sequences[J]. Journal of Manufacturing Systems, 2022, 64: 68-80.
|
[8] |
CHEN X C, YAO L N, MCAULEY J, et al. Deep reinforcement learning in recommender systems: a survey and new perspectives[J]. Knowledge-Based Systems, 2023, 264: 110335.
|
[9] |
陈治宇, 鲍劲松, 郑小虎, 等. 基于长短期记忆网络的装配工艺语义识别方法[J]. 计算机集成制造系统, 2021, 27(6): 1582-1593.
DOI
|
|
CHEN Z Y, BAO J S, ZHENG X H, et al. Semantic recognition method of assembly process based on LSTM[J]. Computer Integrated Manufacturing Systems, 2021, 27(6): 1582-1593 (in Chinese).
|
[10] |
KOREN Y, RENDLE S, BELL R. Advances in collaborative filtering[M]//RICCI F, ROKACH L, SHAPIRA B. Recommender Systems Handbook. 3rd ed. New York: Springer, 2022: 91-142.
|
[11] |
HUANG P S, HE X D, GAO J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]// The 22nd ACM International Conference on Information & Knowledge Management. New York: ACM, 2013: 2333-2338.
|
[12] |
KRICHENE W, MAYORAZ N, RENDLE S, et al. Efficient training on very large corpora via Gramian estimation[EB/OL]. [2024-03-24]. https://dblp.org/db/conf/iclr/iclr2019.html#KricheneMRZYHCA19.
|
[13] |
GUO C, MOUSAVI A, WU X, et al. Breaking the glass ceiling for embedding-based classifiers for large output spaces[C]// The 33rd International Conference on Neural Information Processing Systems. New York: ACM, 2019: 445.
|
[14] |
PANDA D K, RAY S. Approaches and algorithms to mitigate cold start problems in recommender systems: a systematic literature review[J]. Journal of Intelligent Information Systems, 2022, 59(2): 341-366.
|
[15] |
YAO T S, YI X Y, CHENG D Z, et al. Self-supervised learning for large-scale item recommendations[C]// The 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 4321-4330.
|
[16] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minnesota: Association for Computational Linguistics, 2019: 4171-4186.
|
[17] |
林佳瑞, 程志刚, 韩宇, 等. 基于BERT预训练模型的灾害推文分类方法[J]. 图学学报, 2022, 43(3): 530-536.
|
|
LIN J R, CHENG Z G, HAN Y, et al. Disaster tweets classification method based on pretrained BERT model[J]. Journal of Graphics, 2022, 43(3): 530-536 (in Chinese).
DOI
|
[18] |
张晋, 刘检华, 赵文浩, 等. 基于预训练模型与相似度算法的复杂产品装配技术问题风险预警方法[J]. 机械工程学报, 2024, 60(24): 317-329.
|
|
ZHANG J, LIU J H, ZHAO W H, et al. Risk warning method for complex product assembly technology problems based on pre-training model and similarity algorithm[J]. Journal of Mechanical Engineering, 2024, 60(24): 317-329 (in Chinese).
|
[19] |
SUBAKTI A, MURFI H, HARIADI N. The performance of BERT as data representation of text clustering[J]. Journal of Big Data, 2022, 9(1): 15.
DOI
PMID
|
[20] |
PEI J, HAN J W, MORTAZAVI-ASL B, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth[C]// The 17th International Conference on Data Engineering. New York: IEEE Press, 2001: 215-224.
|
[21] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
|
[22] |
AKIBA T, SANO S, YANASE T, et al. Optuna: a next-generation hyperparameter optimization framework[C]// The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 2623-2631.
|