欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (2): 201-215.DOI: 10.11996/JG.j.2095-302X.2023020201

• 综述 • 上一篇    下一篇

基于深度学习的三维形状补全研究综述

杨柳1,2(), 吴晓群1,2()   

  1. 1.北京工商大学计算机学院,北京 100048
    2.食品安全大数据技术北京市重点实验室,北京 100048
  • 收稿日期:2022-05-21 接受日期:2022-09-26 出版日期:2023-04-30 发布日期:2023-05-01
  • 通讯作者: 吴晓群(1984-),女,副教授,博士。主要研究方向为计算机图形学、数字几何处理、图像处理。E-mail:wuxiaoqun@btbu.edu.cn
  • 作者简介:杨柳(1998-),女,硕士研究生。主要研究方向为计算机图形学、数字几何处理、图像处理。E-mail:yliu112825@163.com
  • 基金资助:
    国家自然科学基金面上项目(62272014);“十三五”时期北京市属高校高水平教师队伍建设支持计划项目(CIT&TCD201904036)

3D shape completion via deep learning: a method survey

YANG Liu1,2(), WU Xiao-qun1,2()   

  1. 1. School of Computer Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
    2. Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing 100048, China
  • Received:2022-05-21 Accepted:2022-09-26 Online:2023-04-30 Published:2023-05-01
  • Contact: WU Xiao-qun (1984-), associate professor, Ph.D. Her main research interests cover computer graphics, digital geometry processing, image processing. E-mail:wuxiaoqun@btbu.edu.cn
  • About author:YANG Liu (1998-), master student. Her main research interests cover computer graphics, digital geometry processing, image processing. E-mail:yliu112825@163.com
  • Supported by:
    National Natural Science Foundation of China General Program(62272014);Support Project of High-Level Teachers in Beijing Municipal Universities in the Period of 13th Five-Year Plan(CIT&TCD201904036)

摘要:

三维形状补全是计算机图形学与计算机视觉的基础任务之一,具有广泛的应用背景。其目的旨在从部分缺失的形状数据中推断出完整的形状。针对现有基于深度学习的三维模型补全算法进行概述,根据描述符的形式不同,主要将其分为基于二维形状描述符的补全方法和基于三维形状描述符的补全方法两类。前者即将三维模型投影到二维空间中进行特征提取进而获得完整模型,包括基于二维图像和基于深度图的三维模型补全方法;后者即直接利用三维表示进行模型补全,按照对三维模型的表示方式不同,可进一步分为基于体素、基于点云和基于隐式的方法。同时,汇总了现有基于深度学习的三维模型补全算法所涉及的数据集与评价标准,并对该算法目前存在的问题进行分析和讨论,展望未来研究的新方向。

关键词: 三维形状补全, 深度学习, 卷积神经网络, 计算机视觉, 多层感知机

Abstract:

The task of 3D shape completion, a fundamental aspect of computer graphics and computer vision, has been widely employed in many fields. 3D shape completion aims to infer complete shapes from partially missing shape data. This paper reviewed the current 3D model completion algorithms based on deep learning, and analyzed their advantages and disadvantages. According to the different forms of descriptors, the 3D model completion algorithms could be broadly classified into two categories: the completion methods based on 2D shape descriptors and the completion methods based on 3D shape descriptors. The former involved the projecting of the 3D model into the 2D space for feature extraction to obtain a complete model, including 3D model completion methods based on 2D images and depth maps. The latter involved the direct use of 3D representation for model completion, and according to different representations of 3D models, could be further divided into voxel-based, point cloud-based and implicit-based methods. Meanwhile, this survey provided an overview of the commonly used datasets, metrics, and state-of-the-art performance in the field. It also analyzed and discussed the problems facing current 3D model completion algorithms based on deep learning, and suggested potential avenues for future research.

Key words: 3D shape completion, deep learning, convolutional neural network, computer vision, multi-layer perceptron

中图分类号: