欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (1): 200-210.DOI: 10.11996/JG.j.2095-302X.2025010200

• 工业设计 • 上一篇    下一篇

基于视觉因素的地铁调度人机界面优化设计评价

李博1(), 宣金鸽1, 薛艳敏1, 余隋怀1,2, 王娟1   

  1. 1.西安理工大学艺术与设计学院,陕西 西安 710054
    2.西北工业大学工业设计与人机工效工业和信息化部重点实验室,陕西 西安 710072
  • 收稿日期:2024-05-22 接受日期:2024-09-14 出版日期:2025-02-28 发布日期:2025-02-14
  • 第一作者:李博(1983-),男,副教授,博士。主要研究方向为人机工效与交互设计、产品情感化设计与智能计算。E-mail:libo1983@xaut.edu.cn
  • 基金资助:
    国家社会科学基金一般项目(22BSH122);西安市科技计划项目(22GXFW0079);西安市软科学研究项目(23RKYJ0054)

Evaluation of optimal design of human-machine interface for subway dispatching based on visual factors

LI Bo1(), XUAN Jinge1, XUE Yanmin1, YU Suihuai1,2, WANG Juan1   

  1. 1. Faculty of Art and Design, Xi'an University of Technology, Xi'an Shaanxi 710054, China
    2. Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an Shaanxi 710072, China
  • Received:2024-05-22 Accepted:2024-09-14 Published:2025-02-28 Online:2025-02-14
  • First author:LI Bo (1983-), associate professor, Ph.D. His main research interests cover ergonomics and interaction, product emotional design and intelligent computing. E-mail:libo1983@xaut.edu.cn
  • Supported by:
    National Social Science Foundation of China(22BSH122);Xi'an Science and Technology Project(22GXFW0079);Xi'an Soft Science Research Program(23RKYJ0054)

摘要:

为了优化地铁调度员的任务绩效。以CATIA构建虚拟人体模型并进行视域等级划分,将调度界面和视域进行栅格化处理并构建人机布局优化模型,调度界面进行模块化处理并分析各模块的重要程度,以粒子群算法为基础引入惯性权重得出最优布局方案。以人机界面信息显示优化策略为准则,对人机界面的色彩、字体、图标进行优化设计,搭建眼动实验平台,选用AOI首次注视时间、AOI注视持续时间、AOI注视次数和AOI平均反应时及热点图作为人机界面任务绩效的判断指标。得到结果为:①人机布局优化模型布局设计将调度员注意力提升52%;②AOI首次注视时间、AOI注视持续时间和AOI平均反应时P值均小于0.05,具有显著性差异;优化后的调度界面AOI平均反应时提升50%;③AOI注视次数虽P值大于0.05,在统计学上无意义,但数据对比分析具有现实意义;④热点图符合视域的等级划分,眼动轨迹主要集中在最佳视域区域。通过构建的人机布局优化模型得出的布局方案和信息显示优化策略进行人机界面设计,有助于促使调度员注意力合理分配,提升调度员的任务绩效,为人机界面优化设计提供参考。

关键词: 地铁调度员, 人机界面, 眼动实验, 粒子群算法

Abstract:

To optimize the task performance of subway dispatchers, the method was to construct a virtual human model using CATIA and divide the view level. The scheduling interface and view were rasterized, and a human-machine layout optimization model was constructed. The scheduling interface was modularized, and the importance of each module was analyzed. Based on the particle swarm optimization algorithm, inertia weight was introduced to obtain the optimal layout plan. Based on the optimization strategy for human-machine interface information display, the color, font, and icon of the human-machine interface were optimized and designed. An eye-tracking experimental platform was built, with AOI first fixation time, AOI fixation duration, AOI fixation frequency, AOI average reaction time, and hotspot map selected as evaluation indicators for human-machine interface task performance. The results demonstrated that: ① The layout design obtained from the human-machine layout optimization model increased the dispatcher's attention by 52%. ② The first fixation time, AOI fixation duration, and AOI average reaction time all had P-values less than 0.05, indicating significant differences; the optimized scheduling interface achieved a 50% increase in average AOI response time. ③ Although the P-value of AOI fixation frequency was greater than 0.05 and lacked statistical significance, data comparison analysis revealed its practical significance. ④ The hotspot map conformed to the level divisions of the field of view, and eye tracking was mainly concentrated within the optimal field of view area. The layout scheme and information display optimization strategy derived from the constructed human-machine layout optimization model for human-machine interface design can facilitate the rational allocation of attention among dispatchers, enhance their task performance, and provide reference for optimizing human-machine interface design.

Key words: subway dispatcher, human machine interface, eye movement experiment, particle swarm algorithm

中图分类号: