| [1] | MILDENHALL B, SRINIVASAN P P, TANCIK M,  et al. Nerf: representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106. | 
																													
																						| [2] | SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 4104-4113. | 
																													
																						| [3] | GOESELE M, CURLESS B, SEITZ S M. Multi-view stereo revisited[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 2402-2409. | 
																													
																						| [4] | 常远, 盖孟. 基于神经辐射场的视点合成算法综述[J]. 图学学报, 2021, 42(3): 376-384. | 
																													
																						|  | CHANG Y, GAI M. A review on neural radiance fields based view synthesis[J]. Journal of Graphics, 2021, 42(3): 376-384 (in Chinese). | 
																													
																						| [5] | 董相涛, 马鑫, 潘成伟,  等. 室外大场景神经辐射场综述[J]. 图学学报, 2024, 45(4): 631-649. DOI
 | 
																													
																						|  | DONG X T, MA X, PAN C W,  et al. A review of neural radiance fields for outdoor large scenes[J]. Journal of Graphics, 2024, 45(4): 631-649 (in Chinese). DOI
 | 
																													
																						| [6] | MÜLLER T, EVANS A, SCHIED C,  et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41(4): 1-15. | 
																													
																						| [7] | BAJCSY R, ALOIMONOS Y, TSOTSOS J K. Revisiting active perception[J]. Autonomous Robots, 2018, 42(2): 177-196. DOI    
																																																	PMID
 | 
																													
																						| [8] | LIU M, SHI Y F, ZHENG L T,  et al. Recurrent 3D attentional networks for end-to-end active object recognition[J]. Computational Visual Media, 2019, 5(1): 91-104. | 
																													
																						| [9] | ISLER S, SABZEVARI R, DELMERICO J,  et al. An information gain formulation for active volumetric 3D reconstruction[C]// 2016 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2016: 3477-3484. | 
																													
																						| [10] | BIRCHER A, KAMEL M, ALEXIS K,  et al. Receding horizon “next-best-view” planner for 3D exploration[C]// 2016 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2016: 1462-1468. | 
																													
																						| [11] | ZAENKER T, SMITT C, MCCOOL C,  et al. Viewpoint planning for fruit size and position estimation[C]// 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2021: 3271-3277. | 
																													
																						| [12] | ZENG R, ZHAO W, LIU Y J. PC-NBV: a point cloud based deep network for efficient next best view planning[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2020: 7050-7057. | 
																													
																						| [13] | SONG S, JO S. Surface-based exploration for autonomous 3D modeling[C]// 2018 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2018: 4319-4326. | 
																													
																						| [14] | WU Q Y, MANOCHA D, WANG J,  et al. NeoNav: improving the generalization of visual navigation via generating next expected observations[C]// The Thirty-Fourth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 10001-10008. | 
																													
																						| [15] | PAN X R, LAI Z H, SONG S J,  et al. ActiveNERF: learning where to see with uncertainty estimation[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 230-246. | 
																													
																						| [16] | JIN L R, CHEN X Y L, RÜCKIN J,  et al. NeU-NBV: next best view planning using uncertainty estimation in image-based neural rendering[C]// 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2023: 11305-11312. | 
																													
																						| [17] | KAJIYA J T, VON HERZEN B P. Ray tracing volume densities[J]. ACM SIGGRAPH Computer Graphics, 1984, 18(3): 165-174. | 
																													
																						| [18] | SHEN J X, RUIZ A, AGUDO A,  et al. Stochastic neural radiance fields: quantifying uncertainty in implicit 3D representations[C]// 2021 International Conference on 3D Vision. New York: IEEE Press, 2021: 972-981. | 
																													
																						| [19] | MARTIN-BRUALLA R, RADWAN N, SAJJADI M S M,  et al. NeRF in the wild: neural radiance fields for unconstrained photo collections[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7210-7219. | 
																													
																						| [20] | RAN Y L, ZENG J, HE S B,  et al. NeurAR: neural uncertainty for autonomous 3D reconstruction with implicit neural representations[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 1125-1132. | 
																													
																						| [21] | LEE S, CHEN L, WANG J H,  et al. Uncertainty guided policy for active robotic 3D reconstruction using neural radiance fields[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 12070-12077. | 
																													
																						| [22] | ZHAN H Y, ZHENG J Y, XU Y,  et al. ActiveRMAP: radiance field for active mapping and planning[EB/OL]. [2024-06-23]https://ar5iv.labs.arxiv.org/html/2211.12656,2022. | 
																													
																						| [23] | SITZMANN V, ZOLLHÖFER M, WETZSTEIN G. Scene representation networks: continuous 3D-structure-aware neural scene representations[C]// The 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 101. | 
																													
																						| [24] | MILDENHALL B, SRINIVASAN P P, ORTIZ-CAYON R,  et al. Local light field fusion: practical view synthesis with prescriptive sampling guidelines[J]. ACM Transactions on Graphics, 2019, 38(4): 1-14. |