| [1] | 
																						 
											  WONGSUPHASAWAT K, MORITZ D, ANAND A, et al. Voyager: exploratory analysis via faceted browsing of visualization recommendations[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 649-658.
											 											 | 
										
																													
																						| [2] | 
																						 
											  LUO Y Y, QIN X D, TANG N, et al. DeepEye: towards automatic data visualization[C]// The 34th IEEE International Conference on Data Engineering. New York: IEEE Press, 2018: 101-112.
											 											 | 
										
																													
																						| [3] | 
																						 
											  PANDEY A, SRINIVASAN A, SETLUR V. MEDLEY: intent-based recommendations to support dashboard composition[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(1): 1135-1145.
											 											 | 
										
																													
																						| [4] | 
																						 
											  YU Y, SHEN L, LONG F, et al. PyGWalker: on-the-fly assistant for exploratory visual data analysis[C]// 2024 IEEE Visualization and Visual Analytics. New York: IEEE Press, 2024: 6-10.
											 											 | 
										
																													
																						| [5] | 
																						 
											  SHEN L X, SHEN E Y, LUO Y Y, et al. Towards natural language interfaces for data visualization: a survey[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(6): 3121-3144.
											 											 | 
										
																													
																						| [6] | 
																						 
											  SETLUR V, BATTERSBY S E, TORY M, et al. Eviza: a natural language interface for visual analysis[C]// The 29th ACM Symposium on User Interface Software and Technology. New York: ACM, 2016: 365-377.
											 											 | 
										
																													
																						| [7] | 
																						 
											  HOQUE E, SETLUR V, TORY M, et al. Applying pragmatics principles for interaction with visual analytics[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 309-318.
											 											 | 
										
																													
																						| [8] | 
																						 
											  GAO T, DONTCHEVA M, ADAR E, et al. DataTone: managing ambiguity in natural language interfaces for data visualization[C]// The 28th ACM Symposium on User Interface Software and Technology. New York: ACM, 2015: 489-500.
											 											 | 
										
																													
																						| [9] | 
																						 
											  NARECHANIA A, SRINIVASAN A, STASKO J. NL4DV: a toolkit for generating analytic specifications for data visualization from natural language queries[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 369-379.
											 											 | 
										
																													
																						| [10] | 
																						 
											  TORY M, SETLUR V. Do what I mean, not what I say! Design considerations for supporting intent and context in analytical conversation[C]// 2019 IEEE Conference on Visual Analytics Science and Technology. New York: IEEE Press, 2019: 93-103.
											 											 | 
										
																													
																						| [11] | 
																						 
											  OpenAI, ACHIAM J, ADLER S, et al. GPT-4 technical report[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2303.08774.
											 											 | 
										
																													
																						| [12] | 
																						 
											  OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]// The 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 2011.
											 											 | 
										
																													
																						| [13] | 
																						 
											  TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2302.13971.
											 											 | 
										
																													
																						| [14] | 
																						 
											  BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 159.
											 											 | 
										
																													
																						| [15] | 
																						 
											  WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of- thought prompting elicits reasoning in large language models[C]// The 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 1800.
											 											 | 
										
																													
																						| [16] | 
																						 
											  YAO S Y, YU D, ZHAO J, et al. Tree of thoughts: deliberate problem solving with large language models[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 517.
											 											 | 
										
																													
																						| [17] | 
																						 
											  XIE T B, ZHOU F, CHENG Z J, et al. OpenAgents: an open platform for language agents in the wild[EB/OL]. [2024- 09-19]. https://arxiv.org/abs/2310.10634.
											 											 | 
										
																													
																						| [18] | 
																						 
											  CROTHERS E N, JAPKOWICZ N, VIKTOR H L. Machine-generated text: a comprehensive survey of threat models and detection methods[J]. IEEE Access, 2023, 11: 70977-71002.
											 											 | 
										
																													
																						| [19] | 
																						 
											  WENG L X, LIU S, ZHU H, et al. Towards an understanding and explanation for mixed-initiative artificial scientific text detection[J]. Information Visualization, 2024, 23(3): 272-291.
											 											 | 
										
																													
																						| [20] | 
																						 
											  WENG L X, WANG X B, LU J Y, et al. InsightLens: discovering and exploring insights from conversational contexts in large-language-model-powered data analysis[EB/OL]. [2024-09-19]. https://arxiv.org/html/2404.01644v1.
											 											 | 
										
																													
																						| [21] | 
																						 
											  SRINIVASAN A, DONTCHEVA M, ADAR E, et al. Discovering natural language commands in multimodal interfaces[C]// The 24th International Conference on Intelligent User Interfaces. New York: ACM, 2019: 661-672.
											 											 | 
										
																													
																						| [22] | 
																						 
											  SRINIVASAN A, SETLUR V. Snowy: recommending utterances for conversational visual analysis[C]// The 34th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2021: 864-880.
											 											 | 
										
																													
																						| [23] | 
																						 
											  WANG X B, CHENG F R, WANG Y, et al. Interactive data analysis with next-step natural language query recommendation[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2201.04868.
											 											 | 
										
																													
																						| [24] | 
																						 
											  SRINIVASAN A, STASKO J T. Natural language interfaces for data analysis with visualization: considering what has and could be asked[C]// The Eurographics/IEEE VGTC Conference on Visualization: Short Papers. Goslar: Eurographics Association, 2017: 55-59.
											 											 | 
										
																													
																						| [25] | 
																						 
											  YU B W, SILVA C T. FlowSense: a natural language interface for visual data exploration within a dataflow system[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 1-11.
											 											 | 
										
																													
																						| [26] | 
																						 
											  KUMAR A, AURISANO J, DI EUGENIO B, et al. Intelligent assistant for exploring data visualizations[EB/OL]. [2024-09-19]. https://cdn.aaai.org/ocs/18496/18496-79437-1-PB.pdf.
											 											 | 
										
																													
																						| [27] | 
																						 
											  FU S W, XIONG K, GE X D, et al. Quda: natural language queries for visual data analytics[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2005.03257.
											 											 | 
										
																													
																						| [28] | 
																						 
											  LUO Y Y, TANG N, LI G L, et al. Natural language to visualization by neural machine translation[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 217-226.
											 											 | 
										
																													
																						| [29] | 
																						 
											  LIU C, HAN Y, JIANG R K, et al. ADVISor: automatic visualization answer for natural-language question on tabular data[C]// The 14th IEEE Pacific Visualization Symposium. New York: IEEE Press, 2021: 11-20.
											 											 | 
										
																													
																						| [30] | 
																						 
											  SAKTHEESWARAN A, SRINIVASAN A, STASKO J T. Touch? Speech? or Touch and Speech? Investigating multimodal interaction for visual network exploration and analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(6): 2168-2179.
											 											 | 
										
																													
																						| [31] | 
																						 
											  KAVAZ E, PUIG A, RODRÍGUEZ I, et al. Chatbot-Based natural language interfaces for data visualisation: a scoping review[J]. Applied Sciences, 2023, 13(12): 7025.
											 											 | 
										
																													
																						| [32] | 
																						 
											  FENG Y C J, WANG X B, PAN B, et al. XNLI: explaining and diagnosing NLI-based visual data analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(7): 3813-3827.
											 											 | 
										
																													
																						| [33] | 
																						 
											  GUO Y, CAO N, QI X Y, et al. Urania: visualizing data analysis pipelines for natural language-based data exploration[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2306.07760.
											 											 | 
										
																													
																						| [34] | 
																						 
											  KIM H, LE K D, LIM G, et al. DataDive: supporting readers’ contextualization of statistical statements with data exploration[C]// The 29th International Conference on Intelligent User Interfaces. New York: ACM, 2024: 623-639.
											 											 | 
										
																													
																						| [35] | 
																						 
											  CHU W, PARK S T. Personalized recommendation on dynamic content using predictive bilinear models[C]// The 18th International Conference on World Wide Web. New York: ACM, 2009: 691-700.
											 											 | 
										
																													
																						| [36] | 
																						 
											  RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// The 25th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2009: 452-461.
											 											 | 
										
																													
																						| [37] | 
																						 
											  WANG S J, CAO L B, WANG Y, et al. A survey on session-based recommender systems[J]. ACM Computing Surveys, 2022, 54(7): 154.
											 											 | 
										
																													
																						| [38] | 
																						 
											  BHATIA S, MAJUMDAR D, MITRA P. Query suggestions in the absence of query logs[C]// The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 795-804.
											 											 | 
										
																													
																						| [39] | 
																						 
											  HE Q, JIANG D X, LIAO Z, et al. Web query recommendation via sequential query prediction[C]// 2009 IEEE 25th International Conference on Data Engineering. New York: IEEE Press, 2009: 1443-1454.
											 											 | 
										
																													
																						| [40] | 
																						 
											  CHEN C, HOFFSWELL J, GUO S N, et al. WhatsNext: guidance-enriched exploratory data analysis with interactive, low-code notebooks[C]// 2023 IEEE Symposium on Visual Languages and Human-Centric Computing. New York: IEEE Press, 2023: 209-214.
											 											 | 
										
																													
																						| [41] | 
																						 
											  HUA W Y, LI L, XU S Y, et al. Tutorial on large language models for recommendation[C]// The 17th ACM Conference on Recommender Systems. New York: ACM, 2023: 1281-1283.
											 											 | 
										
																													
																						| [42] | 
																						 
											  HU J, XIA W W, ZHANG X L, et al. Enhancing sequential recommendation via LLM-based semantic embedding learning[C]// The ACM on Web Conference 2024. New York: ACM, 2024: 103-111.
											 											 | 
										
																													
																						| [43] | 
																						 
											  DING R, HAN S, XU Y, et al. Quick-insights: quick and automatic discovery of insights from multi-dimensional data[C]// 2019 International Conference on Management of Data. New York: ACM, 2019: 317-332.
											 											 | 
										
																													
																						| [44] | 
																						 
											  ZHOU Z L, WEN X M, WANG Y, et al. Modeling and leveraging analytic focus during exploratory visual analysis[C]// 2021 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2021: 21.
											 											 | 
										
																													
																						| [45] | 
																						 
											  EPPERSON W, GORANTLA V, MORITZ D, et al. Dead or alive: continuous data profiling for interactive data science[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(1): 197-207.
											 											 | 
										
																													
																						| [46] | 
																						 
											  NARECHANIA A, COSCIA A, WALL E, et al. Lumos: increasing awareness of analytic behavior during visual data analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 1009-1018.
											 											 |