[1] |
SADEGHIPOUR ROUDSARI M, PAK M, VIOLA A. Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design[EB/OL]. [2023-05-11]. https://xueshu.baidu.com/usercenter/paper/show?paperid=db06c426c33b33371c6e5ad36b02ae91&site=xueshu_se.
|
[2] |
ZHAO W X, ZHOU K, LI J Y, et al. A survey of large language models[EB/OL]. (2023-03-31) [2023-05-24]. http://arxiv.org/abs/2303.18223.pdf.
|
[3] |
ANUMBA C J, ISSA R R A, PAN J Y, et al. Ontology-based information and knowledge management in construction[J]. Construction Innovation, 2008, 8(3): 218-239.
|
[4] |
LIN J R, HU Z Z, ZHANG J P, et al. A natural-language-based approach to intelligent data retrieval and representation for cloud BIM[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(1): 18-33.
|
[5] |
SHIN S, ISSA R R A. BIMASR: framework for voice-based BIM information retrieval[J]. Journal of Construction Engineering and Management, 2021, 147(10): 04021124.
|
[6] |
SOCHER R, BAUER J, MANNING C D, et al. Parsing with compositional vector grammars[J]. ACL 2013 - 51st Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference 2013, 1: 455-465.
|
[7] |
CHEN D Q, MANNING C. A fast and accurate dependency parser using neural networks[C]// The 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 740-750.
|
[8] |
ZHENG Z, LU X Z, CHEN K Y, et al. Pretrained domain-specific language model for natural language processing tasks in the AEC domain[J]. Computers in Industry, 2022, 142: 103733.
|
[9] |
ZHOU Y C, ZHENG Z, LIN J R, et al. Integrating NLP and context-free grammar for complex rule interpretation towards automated compliance checking[J]. Computers in Industry, 2022, 142: 103746.
|
[10] |
ZHENG Z, ZHOU Y C, LU X Z, et al. Knowledge-informed semantic alignment and rule interpretation for automated compliance checking[J]. Automation in Construction, 2022, 142: 104524.
|
[11] |
ZHENG J W, FISCHER M. BIM-GPT: a prompt-based virtual assistant framework for BIM information retrieval[EB/OL]. (2023-04-18) [2023-05-11]. http://arxiv.org/abs/2304.09333.pdf.
|
[12] |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10674-10685.
|
[13] |
OPENAI, ACHIAM J, ADLER S, et al. GPT-4 technical report[EB/OL]. (2023-05-24) [2023-06-05]. http://arxiv.org/abs/2303.08774.pdf.
|
[14] |
TUTORIALSUP. SketchUp + ChatGPT 4 different use cases[EB/OL]. (2023-05-04) [2023-06-11]. https://www.youtube.com/watch?v=IPoFA-XyWrc.
|
[15] |
WHITE J, FU Q C, HAYS S, et al. A prompt pattern catalog to enhance prompt engineering with ChatGPT[EB/OL]. (2023- 02-21) [2023-05-14]. http://arxiv.org/abs/2302.11382.pdf.
|
[16] |
PATIL S G, ZHANG T J, WANG X, et al. Gorilla: large language model connected with massive APIs[EB/OL]. (2023-05-24) [2023-06-05]. http://arxiv.org/abs/2305.15334.pdf.
|
[17] |
LI M H, ZHAO Y X, YU B W, et al. API-bank: a comprehensive benchmark for tool-augmented LLMs[EB/OL]. (2023-04-14) [2023-06-06]. http://arxiv.org/abs/2304.08244.pdf.
|
[18] |
WU Q Y, BANSAL G, ZHANG J Y, et al. AutoGen: enabling next-gen LLM applications via multi-agent conversation[EB/OL]. (2023-08-16) [2023-09-07]. http://arxiv.org/abs/2308.08155.pdf.
|
[19] |
WANG G Z, XIE Y Q, JIANG Y F, et al. Voyager: an open-ended embodied agent with large language models[EB/OL]. (2023-05-25) [2023-07-28]. http://arxiv.org/abs/2305.16291.pdf.
|
[20] |
ROZIÈRE B, GEHRING J, GLOECKLE F, et al. Code llama: open foundation models for code[EB/OL]. (2023-08-24) [2023-09-04]. http://arxiv.org/abs/2308.12950.pdf.
|