[1] |
PENG Y, ZHANG M, YU F Q, et al. Digital twin hospital buildings: an exemplary case study through continuous lifecycle integration[J]. Advances in Civil Engineering, 2020, 2020: 8846667.
|
[2] |
WANG H, MENG X H, ZHU X Y. Improving knowledge capture and retrieval in the BIM environment: combining case-based reasoning and natural language processing[J]. Automation in Construction, 2022, 139: 104317.
|
[3] |
SHAHINMOGHADAM M, KAHOU S E, MOTAMEDI A. Neural semantic tagging for natural language-based search in building information models: implications for practice[J]. Computers in Industry, 2024, 155: 104063.
|
[4] |
MO Y, ZHAO D, DU J, et al. Automated staff assignment for building maintenance using natural language processing[J]. Automation in Construction, 2020, 113: 103150.
|
[5] |
LI M H, WANG R H, ZHOU X, et al. ChatTwin: toward automated digital twin generation for data center via large language models[C]// The 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. New York: ACM, 2023: 208-211.
|
[6] |
何庆, 荆传玉, 孙华坤, 等. 基于BIM和语义网的轨道智能运维管理方法[J]. 图学学报, 2024, 45(3): 601-612.
DOI
|
|
HE Q, JING C Y, SUN H K, et al. An intelligent railway operation and maintenance management approach based on BIM and semantic web[J]. Journal of Graphics, 2024, 45(3): 601-612. (in Chinese)
DOI
|
[7] |
KIM J, CHUNG S, CHI S. Cross-lingual information retrieval from multilingual construction documents using pretrained language models[J]. Journal of Construction Engineering and Management, 2024, 150(6): 04024041.
|
[8] |
RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. [2024-05-16]. https://gwern.net/doc/www/s3-us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf.
|
[9] |
蒋灿, 郑哲, 梁雄, 等. 大语言模型驱动的交互式建筑设计新范式——基于Rhino7的概念验证[J]. 图学学报, 2024, 45(3): 594-600.
DOI
|
|
JIANG C, ZHENG Z, LIANG X, et al. A new interaction paradigm for building design driven by large language model: proof of concept with Rhino7[J]. Journal of Graphics, 2024, 45(3): 594-600. (in Chinese)
DOI
|
[10] |
CHIU T K F. The impact of Generative AI (GenAI) on practices, policies and research direction in education: a case of ChatGPT and Midjourney[EB/OL]. (2023-09-04) [2024-05-16]. https://doi.org/10.1080/10494820.2023.2253861.
|
[11] |
张华平, 李林翰, 李春锦. ChatGPT中文性能测评与风险应对[J]. 数据分析与知识发现, 2023, 7(3): 16-25.
DOI
|
|
ZHANG H P, LI L H, LI C J. ChatGPT performance evaluation on Chinese language and risk measures[J]. Data Analysis and Knowledge Discovery, 2023, 7(3): 16-25. (in Chinese)
DOI
|
[12] |
ZHANG L, CHEN Z L. Large language model-based interpretable machine learning control in building energy systems[J]. Energy and Buildings, 2024, 313: 114278.
|
[13] |
裴丹, 张圣林, 孙永谦, 等. 大语言模型时代的智能运维[J]. 中兴通讯技术, 2024, 30(2): 56-62.
|
|
PEI D, ZHANG S L, SUN Y Q, et al. Artificial intelligence for IT operations in era of large language model[J]. ZTE Technology Journal, 2024, 30(2): 56-62. (in Chinese)
|
[14] |
JIANG G, MA Z H, ZHANG L, et al. EPlus-LLM: a large language model-based computing platform for automated building energy modeling[J]. Applied Energy, 2024, 367: 123431.
|