欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 1072-1084.DOI: 10.11996/JG.j.2095-302X.2025051072

• 数字化设计与制造 • 上一篇    下一篇

航空发动机健康管理系统功能架构分析与研究

詹轲倚1,2,3(), 黄维娜1,2, 淳道勇4, 桂咏涛1,2, 张椿林1,2   

  1. 1 中国航发贵阳发动机设计研究所贵州 贵阳 550081
    2 贵州省转子结构完整性重点实验室贵州 贵阳 550081
    3 清华大学航空发动机研究院北京 100084
    4 海装广州局驻贵阳地区军事代表室贵州 贵阳 550081
  • 收稿日期:2024-11-01 接受日期:2025-04-12 出版日期:2025-10-30 发布日期:2025-09-10
  • 第一作者:詹轲倚(1992-),男,博士研究生。主要研究方向为航空发动机健康管理。E-mail:aecc_gys_zky@yeah.net
  • 基金资助:
    中国航发集团自主创新基金(ZZCX-2024-0062);贵州省重大科技专项(2025-001)

Analysis and research on the functional architecture of aero-engine health management system

ZHAN Keyi1,2,3(), HUANG Weina1,2, CHUN Daoyong4, GUI Yongtao1,2, ZHANG Chunlin1,2   

  1. 1 AECC Guiyang Engine Research Institute, Guiyang Guizhou 550081, China
    2 Guizhou Province Key Laboratory of Rotor Structural Integrity, Guiyang Guizhou 550081, China
    3 The Institute for Aero Engine, Tsinghua University, Beijing 100084, China
    4 Naval Equipment Department, Guangzhou Bureau, Military Representative Office in Guiyang Area, Guiyang Guizhou 550081, China
  • Received:2024-11-01 Accepted:2025-04-12 Published:2025-10-30 Online:2025-09-10
  • First author:ZHAN Keyi (1992-), PhD candidate. His main research interest covers aero engine health management. E-mail:aecc_gys_zky@yeah.net
  • Supported by:
    The Independent Innovation Special Fund Project of Aero-Engine Corporation of China(ZZCX-2024-0062);Major Science and Technology Special Project of Guizhou Province(2025-001)

摘要:

针对复杂系统需求边界模糊与架构动态优化难题,融合MagicGrid方法论,提出了“场景-需求-功能-逻辑-物理”五层协同建模框架。基于系统建模语言在MagicDraw平台开展航空发动机健康管理系统功能架构分析与研究:①通过内部块图建立利益相关方交互关系拓扑,实现场景驱动的系统边界定义;②利用需求图构建可追溯性矩阵,完成场景验证与需求完整性分析;③基于用例图-活动图动态组合建模功能行为,经模块化分解形成技术独立的逻辑架构;④通过块定义图与内部块图构建物理模型,借助接口标准化实现逻辑组件与物理实体的解耦设计。案例验证表明,该方法在降低功能重叠率、提升预测效率、敏捷评估状态影响并降低虚警率上具有显著成效。研究成果不仅构建了航空发动机健康管理系统的全生命周期建模范式,实现了场景-需求-功能-物理全链条追溯,拓展了图学方法在MBSE领域的工程应用场景,其多视图协同建模机制对复杂装备系统设计具有普适参考价值。

关键词: 航空发动机, 健康管理系统, 基于模型的系统工程, 系统建模语言, 功能架构

Abstract:

To address the challenges of ambiguous requirement boundaries and dynamic architecture optimization in complex systems, integrating the MagicGrid methodology, a five-layer collaborative modeling framework was established, encompassing “scenario-requirement-function-logic-physical” domain. Model-Based Systems Engineering MBSE using the Systems Modeling Language was carried out on the MagicDraw platform, and functional architecture practices were conducted for an aero-engine health management system. The methodology was divided into four critical phases: ① Scenario-driven system boundary definition through internal block diagrams modeling stakeholder interaction topology; ② Scenario verification and requirement integrity analysis using traceability matrices constructed from requirement diagrams; ③ Dynamic functional behavior modeling via combined use case-activity diagrams, where modular decomposition was used to derive technology-neutral logical architectures; ④ Physical implementation modeling employing block definition diagrams and internal block diagram achieving logic-physical decoupling through standardized interface design. The case validation demonstrated that the proposed method achieved significant effectiveness in reducing functional overlap rate, improving prediction efficiency, enabling agile assessment of state impacts, and lowering the false alarm rate. The research not only established a full-lifecycle modeling paradigm for aero-engine health management systems, realizing end-to-end traceability spanning scenarios, requirements, functions, and physical components, but also expanded the engineering application scenarios of graphic methodologies in the MBSE domain. The multi-view collaborative modeling mechanism was shown to be of universal reference value for complex equipment system design, particularly for resolving cross-domain requirement conflicts and supporting traceable architecture evolution.

Key words: aero-engine, health management system, model-based systems engineering, system modeling language, functional architecture

中图分类号: