图学学报 ›› 2025, Vol. 46 ›› Issue (5): 990-997.DOI: 10.11996/JG.j.2095-302X.2025050990
张浩轩1,2,3(), 李海生1,2,3(
), 王敏1,2,3, 李楠1,2,3
收稿日期:
2024-11-12
接受日期:
2024-12-31
出版日期:
2025-10-30
发布日期:
2025-09-10
通讯作者:
李海生(1974-),男,教授,博士。主要研究方向为计算机图形学、网格生成、数字几何处理等。E-mail:lihsh@th.btbu.edu.cn第一作者:
张浩轩(2000-),男,硕士研究生。主要研究方向为网格生成、数字几何处理。E-mail:zhxggg613@126.com
基金资助:
ZHANG Haoxuan1,2,3(), LI Haisheng1,2,3(
), WANG Min1,2,3, LI Nan1,2,3
Received:
2024-11-12
Accepted:
2024-12-31
Published:
2025-10-30
Online:
2025-09-10
First author:
ZHANG Haoxuan (2000-), master student. His main research interests cover mesh generation and digital geometry processing. E-mail:zhxggg613@126.com
Supported by:
摘要:
在数值模拟中,结构网格的生成往往需要大量的时间和人力投入。结构网格生成的一般方案是寻找计算域和物理域之间的映射,这种映射可以通过求解偏微分方程获得。然而,现有的结构网格生成方法难以同时保证效率和网格质量。针对上述问题,提出了一种基于物理信息神经网络的通用网格生成模型(UMG-PINN)。该模型将网格生成任务作为一个从计算域到物理域的网格变形问题,以边界曲线为输入,利用注意力网络捕捉计算域与物理域之间的潜在映射,为输入的物理域生成结构网格。UMG-PINN在损失函数中引入线性弹性力学中的Navier-Lamé方程作为底层控制方程,确保神经网络在优化损失值时符合弹性体变形规律。由于该模型是自监督的,所以不需要先验知识或数据集,减少了以往制作结构网格数据集的工作量。实验结果表明,UMG-PINN相比传统的超限插值法能够生成更高质量的结构网格。此外,UMG-PINN在物理信息的约束下,也可以应用于非结构网格生成。
中图分类号:
张浩轩, 李海生, 王敏, 李楠. 基于物理信息神经网络的通用网格生成方法[J]. 图学学报, 2025, 46(5): 990-997.
ZHANG Haoxuan, LI Haisheng, WANG Min, LI Nan. Universal mesh generation method based on physics-informed neural network[J]. Journal of Graphics, 2025, 46(5): 990-997.
图2 模型3上不同结构网格生成方法的结果((a) TFI;(b) MGNet+双曲线方程;(c) MGNet+泊松方程;(d) UMGPINN)
Fig. 2 Results of different structured mesh generation methods on model3 ((a) TFI; (b) MGNet+hyperbola equation; (c) MGNet+poisson equation; (d) UMGPINN)
图3 模型4上不同结构网格生成方法的结果((a) MGNet+双曲线方程;(b) MGNet+泊松方程;(c) UMGPINN)
Fig. 3 Results of different structured mesh generation methods on model4 ((a) MGNet+hyperbola equation;(b) MGNet+poisson equation; (c) UMGPINN)
图4 模型5上不同结构网格生成方法的结果((a) TFI;(b) MGNet+双曲线方程;(c) MGNet+泊松方程;(d) UMGPINN)
Fig. 4 Results of different structured mesh generation methods on model5 ((a) TFI; (b) MGNet+hyperbola equation; (c) MGNet+poisson equation; (d) UMGPINN)
图5 在不同模型下三维结构网格生成的结果((a) 模型1;(b) 模型2;(c) 模型3)
Fig. 5 Results of 3D structured mesh generation on different models ((a) Model 1; (b) Model 2; (c) Model 3)
模型 | TFI | MGNet[ | MGNet[ | Ours |
---|---|---|---|---|
模型1 | 83.66/96.40 | 85.58/94.42 | 84.84/95.18 | 85.75/94.21 |
模型2 | 83.82/96.20 | 84.63/96.37 | 85.09/95.89 | 85.40/96.42 |
模型3 | 65.08/114.70 | 69.00/110.82 | 65.74/114.31 | 70.11/109.54 |
模型4 | - | 79.78/100.53 | 78.86/101.54 | 75.13/105.40 |
模型5 | 82.94/97.10 | 83.17/96.91 | 81.79/98.27 | 83.32/96.77 |
模型6 | 84.14/95.86 | 86.75/93.25 | 85.31/94.66 | 87.91/92.09 |
表1 不同结构网格模型的平均最小/最大夹角的比较/(°)
Table 1 A comparison of average min/max included angle for different models of structured meshes/(°)
模型 | TFI | MGNet[ | MGNet[ | Ours |
---|---|---|---|---|
模型1 | 83.66/96.40 | 85.58/94.42 | 84.84/95.18 | 85.75/94.21 |
模型2 | 83.82/96.20 | 84.63/96.37 | 85.09/95.89 | 85.40/96.42 |
模型3 | 65.08/114.70 | 69.00/110.82 | 65.74/114.31 | 70.11/109.54 |
模型4 | - | 79.78/100.53 | 78.86/101.54 | 75.13/105.40 |
模型5 | 82.94/97.10 | 83.17/96.91 | 81.79/98.27 | 83.32/96.77 |
模型6 | 84.14/95.86 | 86.75/93.25 | 85.31/94.66 | 87.91/92.09 |
模型 | TFI | MGNet[ 泊松方程 | MGNet[ 双曲线方程 | Ours |
---|---|---|---|---|
模型1 | 0.011 | 0.004 | 0.005 | 0.001 |
模型2 | 0.082 | 0.005 | 0.005 | 0.001 |
模型3 | 0.015 | 0.003 | 0.003 | 0.003 |
模型4 | - | 0.003 | 0.004 | 0.003 |
模型5 | 0.082 | 0.005 | 0.004 | 0.001 |
模型6 | 0.017 | 0.003 | 0.005 | 0.001 |
表2 不同结构网格模型的网格生成时间的比较/s
Table 2 A comparison of mesh generation time for different models of structured meshes/s
模型 | TFI | MGNet[ 泊松方程 | MGNet[ 双曲线方程 | Ours |
---|---|---|---|---|
模型1 | 0.011 | 0.004 | 0.005 | 0.001 |
模型2 | 0.082 | 0.005 | 0.005 | 0.001 |
模型3 | 0.015 | 0.003 | 0.003 | 0.003 |
模型4 | - | 0.003 | 0.004 | 0.003 |
模型5 | 0.082 | 0.005 | 0.004 | 0.001 |
模型6 | 0.017 | 0.003 | 0.005 | 0.001 |
图8 在不同模型下三维非结构网格生成的结果((a) 模型1;(b) 模型2;(c) 模型3)
Fig. 8 Results of 3D unstructured mesh generation on different models ((a) Model 1; (b) Model 2; (c) Model 3)
模型 | Delaunay | Ours |
---|---|---|
模型1 | 46.26/77.72 | 36.22/86.63 |
模型2 | 46.13/77.78 | 42.19/79.94 |
模型3 | 46.36/77.53 | 52.23/68.84 |
模型4 | 46.7/77.16 | 52.98/67.78 |
模型5 | 46.50/77.44 | 52.54/68.62 |
模型6 | 46.70/77.18 | 48.02/74.34 |
表3 不同非结构网格模型的平均最小/最大夹角的比较/(°)
Table 3 A comparison of average min/max included angle for different models of unstructured meshes/(°)
模型 | Delaunay | Ours |
---|---|---|
模型1 | 46.26/77.72 | 36.22/86.63 |
模型2 | 46.13/77.78 | 42.19/79.94 |
模型3 | 46.36/77.53 | 52.23/68.84 |
模型4 | 46.7/77.16 | 52.98/67.78 |
模型5 | 46.50/77.44 | 52.54/68.62 |
模型6 | 46.70/77.18 | 48.02/74.34 |
模型 | Delaunay | Ours |
---|---|---|
模型1 | 1.359 | 1.722 |
模型2 | 1.362 | 1.482 |
模型3 | 1.356 | 1.185 |
模型4 | 1.346 | 1.164 |
模型5 | 1.352 | 1.176 |
模型6 | 1.346 | 1.321 |
表4 不同非结构网格模型的平均纵横比的比较
Table 4 A comparison of average aspect ratio for different models of unstructured meshes
模型 | Delaunay | Ours |
---|---|---|
模型1 | 1.359 | 1.722 |
模型2 | 1.362 | 1.482 |
模型3 | 1.356 | 1.185 |
模型4 | 1.346 | 1.164 |
模型5 | 1.352 | 1.176 |
模型6 | 1.346 | 1.321 |
[1] | THOMPSON J F. Grid generation techniques in computational fluid dynamics[J]. AIAA journal, 1984, 22(11): 1505-1523. |
[2] | UM E S, KIM S S, FU H. A tetrahedral mesh generation approach for 3D marine controlled-source electromagnetic modeling[J]. Computers & Geosciences, 2017, 100: 1-9. |
[3] | CANDY A S. A consistent approach to unstructured mesh generation for geophysical models[EB/OL]. [2024-09-11]. https://arxiv.org/abs/1703.08491. |
[4] | GIBSON R F. A review of recent research on mechanics of multifunctional composite materials and structures[J]. Composite structures, 2010, 92(12): 2793-2810. |
[5] | LU F, QI L, JIANG X, et al. NNW-GridStar: interactive structured mesh generation software for aircrafts[J]. Advances in Engineering Software, 2020, 145: 102803. |
[6] | ITO Y. Challenges in unstructured mesh generation for practical and efficient computational fluid dynamics simulations[J]. Computers & Fluids, 2013, 85: 47-52. |
[7] | 李海生, 曹国梁, 魏阳, 等. 三角网格曲面共形参数化研究综述[J]. 图学学报, 2021, 42(4): 535-545. |
LI H S, CAO G L, WEI Y, et al. Survey on triangular mesh surface conformal parameterization[J]. Journal of Graphics, 2021, 42(4): 535-545 (in Chinese).
DOI |
|
[8] | BAKER T J. Mesh generation: art or science?[J]. Progress in Aerospace Sciences, 2005, 41(1): 29-63. |
[9] | GORDON W J, HALL C A. Construction of curvilinear co‐ordinate systems and applications to mesh generation[J]. International Journal for Numerical Methods in Engineering, 1973, 7(4): 461-477. |
[10] | ERIKSSON L E. Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation[J]. AIAA Journal, 1982, 20(10): 1313-1320. |
[11] | ALLEN C B. Automatic structured multiblock mesh generation using robust transfinite interpolation[EB/OL]. [2024-09-11]. https://arc.aiaa.org/doi/10.2514/6.2007-3833. |
[12] | ALLEN C B. Towards automatic structured multiblock mesh generation using improved transfinite interpolation[J]. International Journal for Numerical Methods in Engineering, 2008, 74(5): 697-733. |
[13] | SHRAGGE J. Differential mesh generation[EB/OL]. [2024- 09-11]. https://onepetro.org/SEGAM/proceedings-abstract/SEG06/All-SEG06/SEG-2006-2206/93562. |
[14] | KARMAN JR S L, ANDERSON W K, SAHASRABUDHE M. Mesh generation using unstructured computational meshes and elliptic partial differential equation smoothing[J]. AIAA Journal, 2006, 44(6): 1277-1286. |
[15] | HUANG L L, WANG N H, LIU C, et al. The turbomaster structured grid generation framework based on multi-block topology and elliptic pde optimizer[EB/OL]. [2024-09-11]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4845674. |
[16] | CHENG Y C, LEE H Y, TULYAKOV S, et al. SDFusion: multimodal 3D shape completion, reconstruction, and generation[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4456-4465. |
[17] | 李海生, 武玉娟, 郑艳萍, 等. 基于深度学习的三维数据分析理解方法研究综述[J]. 计算机学报, 2020, 43(1): 41-63. |
LI H S, WU Y J, ZHENG Y P, et al. A survey of 3D data analysis and understanding based on deep learning[J]. Chinese Journal of Computers, 2020, 43(1): 41-63 (in Chinese). | |
[18] | 李海生, 孙莉, 武玉娟, 等. 非刚性三维模型检索特征提取技术研究[J]. 软件学报, 2018, 29(2): 483-505. |
LI H S, SUN L, WU Y J, et al. Survey on feature extraction techniques for non-rigid 3D shape retrieval[J]. Journal of Software, 2018, 29(2): 483-505 (in Chinese). | |
[19] | SONG D, YANG Y, LI W, et al. Adaptive semantic transfer network for unsupervised 2D image-based 3D model retrieval[J]. Computer Vision and Image Understanding, 2024, 238: 103858. |
[20] |
杨柳, 吴晓群. 基于深度学习的三维形状补全研究综述[J]. 图学学报, 2023, 44(2): 201-215.
DOI |
YANG L, WU X Q. 3D shape completion via deep learning: a method survey[J]. Journal of Graphics, 2023, 44(2): 201-215 (in Chinese).
DOI |
|
[21] | YAO J W, LI C M, SUN K Q, et al. NDC-scene: boost monocular 3D semantic scene completion in normalized device coordinates space[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 9421-9431. |
[22] | LI Y M, YU Z D, CHOY C, et al. VoxFormer: sparse voxel transformer for camera-based 3D semantic scene completion[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 9087-9098. |
[23] | LIU F F, WU D K, WEI Y, et al. Sherpa3D: boosting high-fidelity text-to-3D generation via coarse 3D prior[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 20763-20774. |
[24] | LIANG Y X, YANG X, LIN J T, et al. LucidDreamer: towards high-fidelity text-to-3D generation via interval score matching[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 6517-6526. |
[25] | ZHANG L W, WANG Z Y, ZHANG Q X, et al. CLAY: a controllable large-scale generative model for creating high-quality 3D assets[J]. ACM Transactions on Graphics, 2024, 43(4): 120. |
[26] | ZHOU Y X, CAI X, ZHAO Q F, et al. Quadrilateral mesh generation method based on convolutional neural network[J]. Information, 2023, 14(5): 273. |
[27] | PAN J, HUANG J W, CHENG G D, et al. Reinforcement learning for automatic quadrilateral mesh generation: a soft actor-critic approach[J]. Neural Networks, 2023, 157: 288-304. |
[28] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
[29] | SZE V, CHEN Y H, YANG T J, et al. Efficient processing of deep neural networks: A tutorial and survey[J]. Proceedings of the IEEE, 2017, 105(12): 2295-2329. |
[30] | SAMEK W, MONTAVON G, LAPUSCHKIN S, et al. Explaining deep neural networks and beyond: A review of methods and applications[J]. Proceedings of the IEEE, 2021, 109(3): 247-278. |
[31] | CHEN X, LI T, WAN Q, et al. MGNet: a novel differential mesh generation method based on unsupervised neural networks[J]. Engineering with Computers, 2022, 38(5): 4409-4421. |
[32] | CHEN X, LIU J, ZHANG Q, et al. Developing a novel structured mesh generation method based on deep neural networks[J]. Physics of Fluids, 2023, 35(9): 097137. |
[33] | PERSSON P O, STRANG G. A simple mesh generator in MATLAB[J]. SIAM Review, 2004, 46(2): 329-345. |
[34] | SNEDDON I N, BERRY D S. The classical theory of elasticity[M]// FLÜGGE S. Elasticity and Plasticity/Elastizität und Plastizität. Berlin: Springer, 1958: 1-126. 6. |
[35] |
BRERETON R G, LLOYD G R. Support vector machines for classification and regression[J]. Analyst, 2010, 135(2): 230-267.
DOI PMID |
[1] | 冷珏琳, 徐权, 鲍献丰. 基于几何特征的非均匀矩形网格生成方法[J]. 图学学报, 2025, 46(4): 818-825. |
[2] | 郑佳辉, 郭宇, 吴涛, 王胜博, 黄少华, 郑凯文. 基于数据挖掘与深度语义模型的工艺序列推荐方法[J]. 图学学报, 2025, 46(4): 864-873. |
[3] | 刘鸿硕, 白静, 晏浩, 林淦. 面向三维点云的平衡泛化和特化的细粒度分类网络[J]. 图学学报, 2025, 46(3): 602-613. |
[4] | 王雪婷, 郭新, 汪松, 陈恩庆. 基于变分自编码器掩蔽重建的骨骼点动作识别方法[J]. 图学学报, 2025, 46(2): 270-278. |
[5] | 林晓, 张秋阳, 郑晓妹, 杨启哲. 基于自监督的主动标签清洗[J]. 图学学报, 2024, 45(3): 495-504. |
[6] | 王浩淼, 桑胜举, 段晓东, 张伟华, 陶体伟, 马婷. 虚拟现实环境下的协同式三维建模方法[J]. 图学学报, 2024, 45(1): 169-182. |
[7] | 岳明宇, 高希峰, 毕重科. 三维建筑模型的低模网格生成[J]. 图学学报, 2023, 44(4): 764-774. |
[8] | 安 峰 , 戴 军 , 韩 振 , 严仲兴 . 引入注意力机制的自监督光流计算[J]. 图学学报, 2022, 43(5): 841-848. |
[9] | 李农勤 1, 杨维信 2,3 . 基于生成式对抗神经网络的手写文字图像补全[J]. 图学学报, 2019, 40(5): 878-884. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||