欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (5): 918-927.DOI: 10.11996/JG.j.2095-302X.2023050918

• 图像处理与计算机视觉 • 上一篇    下一篇

基于隐含空间知识融合的输电线路多金具检测方法

翟永杰1(), 郭聪彬1, 王乾铭1, 赵宽1, 白云山1, 张冀2()   

  1. 1.华北电力大学自动化系,河北 保定 071003
    2.华北电力大学计算机系,河北 保定 071003
  • 收稿日期:2023-04-24 接受日期:2023-08-25 出版日期:2023-10-31 发布日期:2023-10-31
  • 通讯作者: 张冀(1972-),男,副教授,博士。主要研究方向为计算机视觉、图像处理和信息融合。E-mail:zhangji@ncepu.edu.cn
  • 作者简介:翟永杰(1972-),男,教授,博士。主要研究方向为模式识别和数字图像处理。E-mail:zhaiyongjie@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(U21A20486);国家自然科学基金项目(61871182);中央高校基本科研业务费专项资金项目(2021MS081);中央高校基本科研业务费专项资金项目(2023JC006)

Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion

ZHAI Yong-jie1(), GUO Cong-bin1, WANG Qian-ming1, ZHAO Kuan1, BAI Yun-shan1, ZHANG Ji2()   

  1. 1. Department of Automation, North China Electric Power University, Baoding Hebei 071003, China
    2. Department of Computer Science, North China Electric Power University, Baoding Hebei 071003, China
  • Received:2023-04-24 Accepted:2023-08-25 Online:2023-10-31 Published:2023-10-31
  • Contact: ZHANG Ji (1972-), associate professor, Ph.D. His main research interests cover computer vision, image processing and information fusion. E-mail:zhangji@ncepu.edu.cn
  • About author:ZHAI Yong-jie (1972-), professor, Ph.D. His main research interests cover pattern recognition and digital image processing. E-mail:zhaiyongjie@ncepu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U21A20486);National Natural Science Foundation of China(61871182);Fundamental Research Funds for the Central Universities(2021MS081);Fundamental Research Funds for the Central Universities(2023JC006)

摘要:

针对输电线路多金具检测任务中的小目标问题和密集遮挡问题,提出基于隐含空间知识融合的输电线路多金具检测方法。首先,为了挖掘输电线路金具间的隐含空间知识以协助模型进行检测,提出空间框设定模块和空间上下文提取模块进行空间框的设定以及空间上下文信息的提取。然后,设计空间上下文记忆模块对空间上下文信息进行筛选和记忆,并由此辅助多金具检测模型的定位。最后,改进模型后处理部分以进一步缓解金具密集遮挡带来的低检测精度问题。实验结果表明,该模型对多类金具的检测有提升效果,尤其对于小目标金具和密集遮挡金具的提升尤为显著。且相比于基线模型,在整体的AP50评价指标和更严格的AP75评价指标上分别提高了3.5%和5.7%。这为后续金具检测的落地应用和进一步的故障诊断奠定了基础。

关键词: 输电线路, 金具检测, 深度学习, 隐含空间知识, 空间上下文信息

Abstract:

To address the challenge of detecting tiny-size and dense occlusion objects in the task of multi-fitting detection for transmission lines, a transmission line multi-fitting detection method based on implicit spatial knowledge fusion was proposed. First, in order to mine the implicit spatial knowledge among transmission line fittings and assist the model in detection, the spatial box setting module and the spatial context extraction module were proposed to set the spatial box and extract the spatial context information. Then, the spatial context memory module was designed to filter and remember the spatial context information to aid the positioning of multi-fitting detection model. Finally, the post-processing part of the model was enhanced to further mitigate the issue of low detection accuracy stemming from dense occlusion by fittings. The experimental results demonstrated the efficacy of the proposed model in enhancing the detection of various kinds of fittings, especially those of tiny size and dense occlusion. Compared with the baseline model, the AP50 evaluation index and the more stringent AP75 evaluation index were increased by 3.5% and 5.7%, respectively. It laid a foundation for the application of fitting detection and further fault diagnosis.

Key words: transmission line, fitting detection, deep learning, implicit spatial knowledge, spatial context information

中图分类号: