图学学报 ›› 2024, Vol. 45 ›› Issue (3): 516-527.DOI: 10.11996/JG.j.2095-302X.2024030516
收稿日期:
2023-11-17
接受日期:
2024-02-24
出版日期:
2024-06-30
发布日期:
2024-06-11
第一作者:
黄友文(1982-),男,副教授,博士。主要研究方向为计算机视觉、自然语言处理和机器学习。E-mail:ywhuang@jxust.edu.cn
基金资助:
HUANG Youwen(), LIN Zhiqin, ZHANG Jin, CHEN Junkuan
Received:
2023-11-17
Accepted:
2024-02-24
Published:
2024-06-30
Online:
2024-06-11
First author:
HUANG Youwen (1982-), associate professor, Ph.D. His main research interests cover computer vision, natural language processing, and machine learning. E-mail:ywhuang@jxust.edu.cn
Supported by:
摘要:
针对现有的大多数自底向上人体姿态估计算法存在模型规模大、计算成本高及对边缘设备不友好等问题,提出了一种基于YOLOv5s6-Pose的轻量级多人姿态估计网络模型YOLOv5s6-Pose-CT。该模型在颈部网络中引入空间和通道重建卷积,以减少空间和通道维度上的特征冗余。同时,提出了一种坐标Transformer嵌入于主干网络中,使模型专注于长距离依赖和拥有高效的局部特征提取能力。其次,通过使用无偏特征位置对齐来解决多尺度融合过程中出现的特征错位问题。最后,使用损失函数MPDIoU对边界框的回归损失重新定义。在COCO 2017数据集上的实验结果表明,本文优化的网络模型与主流的轻量级网络EfficientHRNet-H1模型相比,在保持相同精度的同时,参数量和计算量分别减少16.2%和66.1%。相比于基准模型YOLOv5s6-Pose,参数量减少11.2%,计算量降低5.8%,平均检测精度和平均召回率分别提升2.5%和2.6%。
中图分类号:
黄友文, 林志钦, 章劲, 陈俊宽. 结合坐标Transformer的轻量级人体姿态估计算法[J]. 图学学报, 2024, 45(3): 516-527.
HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer[J]. Journal of Graphics, 2024, 45(3): 516-527.
图3 Transformer架构图((a) Swin Transformer;(b)坐标注意力模块;(c)坐标Transformer)
Fig. 3 Transformer structure chart ((a) Swin Transformer; (b) Coordinate attention module; (c) Coordinate Transformer)
图4 可视化对比((a) Swin Transformer错检;(b)坐标注意力漏检;(c),(d)坐标Transformer矫正)
Fig. 4 Visual comparison ((a) Swin Transformer error detection; (b) Coordinate attention misdetection; (c), (d) Coordinate Transformer correction)
图7 可视化结果对比((a)传统角对齐插值方法;(b) UFPA角对齐插值方法)
Fig. 7 Comparison of visualization results ((a) Traditional corner alignment interpolation methods; (b) UFPA corner alignment interpolation methods)
方法 | 输入规模 | 参数量/MB | 计算量/G | AP/% | AP50/% | AP75/% | APL/% | AR/% |
---|---|---|---|---|---|---|---|---|
Lightweight OpenPose | 368×368 | 4.1 | 18.0 | 42.8 | - | - | - | - |
EfficientHRNet-H1 | 480×480 | 16.0 | 28.4 | 59.2 | 82.6 | 64.0 | 67.2 | 64.7 |
EfficientHRNet-H2 | 448×448 | 10.3 | 15.4 | 52.9 | 80.5 | 59.1 | 61.9 | 59.3 |
EfficientHRNet-H3 | 416×416 | 6.9 | 8.4 | 44.8 | 76.7 | 48.3 | 52.3 | 52.4 |
EfficientHRNet-H4 | 384×384 | 3.7 | 4.2 | 35.7 | 69.6 | 33.7 | 44.3 | 42.9 |
YOLOv5s6-Pose-ti-lite | 640×640 | 12.6 | 8.6 | 54.9 | 82.2 | 59.9 | 66.6 | 61.8 |
Baseline | 640×640 | 15.1 | 10.2 | 56.7 | 83.7 | 61.3 | 71.1 | 63.7 |
Ours | 640×640 | 13.4 | 9.6 | 59.2 | 85.3 | 63.3 | 73.2 | 66.3 |
表1 在COCO2017人体关键点数据集中轻量级自底向上方法对比
Table 1 Comparison of Lightweight Bottom Up Methods on the COCO2017 dataset
方法 | 输入规模 | 参数量/MB | 计算量/G | AP/% | AP50/% | AP75/% | APL/% | AR/% |
---|---|---|---|---|---|---|---|---|
Lightweight OpenPose | 368×368 | 4.1 | 18.0 | 42.8 | - | - | - | - |
EfficientHRNet-H1 | 480×480 | 16.0 | 28.4 | 59.2 | 82.6 | 64.0 | 67.2 | 64.7 |
EfficientHRNet-H2 | 448×448 | 10.3 | 15.4 | 52.9 | 80.5 | 59.1 | 61.9 | 59.3 |
EfficientHRNet-H3 | 416×416 | 6.9 | 8.4 | 44.8 | 76.7 | 48.3 | 52.3 | 52.4 |
EfficientHRNet-H4 | 384×384 | 3.7 | 4.2 | 35.7 | 69.6 | 33.7 | 44.3 | 42.9 |
YOLOv5s6-Pose-ti-lite | 640×640 | 12.6 | 8.6 | 54.9 | 82.2 | 59.9 | 66.6 | 61.8 |
Baseline | 640×640 | 15.1 | 10.2 | 56.7 | 83.7 | 61.3 | 71.1 | 63.7 |
Ours | 640×640 | 13.4 | 9.6 | 59.2 | 85.3 | 63.3 | 73.2 | 66.3 |
图9 轻量级自底向上多人姿态估计方法的可视化结果对比
Fig. 9 Comparison of visual results of lightweight bottom-up multi-person pose estimation methods ((a) EfficientHRNet-H3; (b) EfficientHRNet-H2; (c) EfficientHRNet-H1; (d) YOLOv5s6-Pose; (e) Ours)
方法 | 参数量/MB | 计算量/G | AP/% |
---|---|---|---|
YOLOv5s6-Pose | 15.1 | 10.2 | 56.7 |
YOLOv5s6-Pose+SCConv | 12.3 | 8.3 | 53.6 |
Backbone+SCConv | 14.0 | 9.4 | 55.3 |
Neck+SCConv | 13.3 | 9.0 | 56.4 |
表2 在COCO2017人体关键点数据集中SCConv模块作用于不同阶段的实验对比
Table 2 Experimental comparison of SCConv module in different stages on the COCO2017 dataset
方法 | 参数量/MB | 计算量/G | AP/% |
---|---|---|---|
YOLOv5s6-Pose | 15.1 | 10.2 | 56.7 |
YOLOv5s6-Pose+SCConv | 12.3 | 8.3 | 53.6 |
Backbone+SCConv | 14.0 | 9.4 | 55.3 |
Neck+SCConv | 13.3 | 9.0 | 56.4 |
方法 | 参数量/MB | 计算量/G | AP/% |
---|---|---|---|
YOLOv5s6-Pose | 15.1 | 10.2 | 56.7 |
YOLOv5s6-Pose+CA | 15.1 | 10.2 | 56.9 |
YOLOv5s6-Pose+Swin Transformer | 15.6 | 12.5 | 57.2 |
YOLOv5s6-Pose+CT | 15.2 | 10.8 | 58.6 |
表3 在COCO2017人体关键点数据集中模型使用不同注意力机制的实验对比
Table 3 Experimental comparison of using different attention in the model on the COCO2017 dataset
方法 | 参数量/MB | 计算量/G | AP/% |
---|---|---|---|
YOLOv5s6-Pose | 15.1 | 10.2 | 56.7 |
YOLOv5s6-Pose+CA | 15.1 | 10.2 | 56.9 |
YOLOv5s6-Pose+Swin Transformer | 15.6 | 12.5 | 57.2 |
YOLOv5s6-Pose+CT | 15.2 | 10.8 | 58.6 |
模块 | 实验 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
SCConv | - | √ | - | - | - | - | √ | √ | √ | √ | √ | √ |
CT | - | - | √ | - | - | - | - | - | √ | - | √ | √ |
UFPA | - | - | - | √ | - | √ | - | √ | - | √ | √ | √ |
MPDIoU | - | - | - | - | √ | √ | √ | - | - | √ | - | √ |
表4 消融实验设计
Table 4 Ablation experimental design
模块 | 实验 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
SCConv | - | √ | - | - | - | - | √ | √ | √ | √ | √ | √ |
CT | - | - | √ | - | - | - | - | - | √ | - | √ | √ |
UFPA | - | - | - | √ | - | √ | - | √ | - | √ | √ | √ |
MPDIoU | - | - | - | - | √ | √ | √ | - | - | √ | - | √ |
实验 | 参数量/MB | 计算量/G | AP/% | AP50/% | AR/% |
---|---|---|---|---|---|
1 (Baseline) | 15.1 | 10.2 | 56.7 | 83.7 | 63.7 |
2 (SCConv) | 13.3 | 9.0 | 56.4 | 83.1 | 63.5 |
3 (CT) | 15.2 | 10.8 | 58.6 | 84.8 | 65.6 |
4 (UFPA) | 15.1 | 10.2 | 57.4 | 83.9 | 64.5 |
5 (MPDIoU) | 15.1 | 10.2 | 57.2 | 83.9 | 64.3 |
6 (UFPA+MPDIoU) | 15.1 | 10.2 | 57.8 | 84.2 | 64.9 |
7 (SCConv+MPDIoU) | 13.3 | 9.0 | 56.8 | 83.7 | 63.8 |
8 (SCConv+UFPA) | 13.3 | 9.0 | 57.1 | 83.8 | 64.1 |
9 (SCConv+CT) | 13.4 | 9.6 | 58.2 | 84.6 | 65.4 |
10 (SCConv+UFPA+MPDIoU) | 13.3 | 9.0 | 57.4 | 84.0 | 64.4 |
11 (SCConv+CT+UFPA) | 13.4 | 9.6 | 58.8 | 85.1 | 65.8 |
12 (SCConv+CT+UFPA+MPDIoU) | 13.4 | 9.6 | 59.2 | 85.3 | 66.3 |
表5 消融实验结果对比
Table 5 Comparison of ablation experiment results
实验 | 参数量/MB | 计算量/G | AP/% | AP50/% | AR/% |
---|---|---|---|---|---|
1 (Baseline) | 15.1 | 10.2 | 56.7 | 83.7 | 63.7 |
2 (SCConv) | 13.3 | 9.0 | 56.4 | 83.1 | 63.5 |
3 (CT) | 15.2 | 10.8 | 58.6 | 84.8 | 65.6 |
4 (UFPA) | 15.1 | 10.2 | 57.4 | 83.9 | 64.5 |
5 (MPDIoU) | 15.1 | 10.2 | 57.2 | 83.9 | 64.3 |
6 (UFPA+MPDIoU) | 15.1 | 10.2 | 57.8 | 84.2 | 64.9 |
7 (SCConv+MPDIoU) | 13.3 | 9.0 | 56.8 | 83.7 | 63.8 |
8 (SCConv+UFPA) | 13.3 | 9.0 | 57.1 | 83.8 | 64.1 |
9 (SCConv+CT) | 13.4 | 9.6 | 58.2 | 84.6 | 65.4 |
10 (SCConv+UFPA+MPDIoU) | 13.3 | 9.0 | 57.4 | 84.0 | 64.4 |
11 (SCConv+CT+UFPA) | 13.4 | 9.6 | 58.8 | 85.1 | 65.8 |
12 (SCConv+CT+UFPA+MPDIoU) | 13.4 | 9.6 | 59.2 | 85.3 | 66.3 |
[1] | 冯杰, 郑建立. 基于卷积与Transformer的人体姿态估计方法对比研究[J]. 软件工程, 2023, 26(3): 18-24. |
FENG J, ZHENG J L. A comparative study of human pose estimation based on convolution and Transformer[J]. Software Engineering, 2023, 26(3): 18-24 (in Chinese). | |
[2] | 蔡兴泉, 霍宇晴, 李发建, 等. 面向太极拳学习的人体姿态估计及相似度计算[J]. 图学学报, 2022, 43(4): 695-706. |
CAI X Q, HUO Y Q, LI F J, et al. Human pose estimation and similarity calculation for Tai Chi learning[J]. Journal of Graphics, 2022, 43(4): 695-706 (in Chinese).
DOI |
|
[3] | 蔡敏敏, 黄继风, 林晓, 等. 基于人体姿态估计与聚类的特定运动帧获取方法[J]. 图学学报, 2022, 43(1): 44-52. |
CAI M M, HUANG J F, LIN X, et al. Acquisition method of specific motion frame based on human attitude estimation and clustering[J]. Journal of Graphics, 2022, 43(1): 44-52 (in Chinese). | |
[4] | 范溢华, 王永振, 燕雪峰, 等. 人脸识别任务驱动的低光照图像增强算法[J]. 图学学报, 2022, 43(6): 1170-1181. |
FAN Y H, WANG Y Z, YAN X F, et al. Face recognition-driven low-light image enhancement[J]. Journal of Graphics, 2022, 43(6): 1170-1181 (in Chinese). | |
[5] | 赵心驰, 胡岸明, 何为. 基于卷积神经网络和XGBoost的摔倒检测[J]. 激光与光电子学进展, 2020, 57(16): 161024. |
ZHAO X C, HU A M, HE W. Fall detection based on convolutional neural network and XGBoost[J]. Laser & Optoelectronics Progress, 2020, 57(16): 161024 (in Chinese). | |
[6] | 卢健, 杨腾飞, 赵博, 等. 基于深度学习的人体姿态估计方法综述[J]. 激光与光电子学进展, 2021, 58(24): 69-88. |
LU J, YANG T F, ZHAO B, et al. Review of deep learning- based human pose estimation[J]. Laser & Optoelectronics Progress, 2021, 58(24): 69-88 (in Chinese). | |
[7] | TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 1653-1660. |
[8] | WEI S H, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 4724-4732. |
[9] | NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[EB/OL]. (2016-10-11) [2023-08-07]. https://link.springer.com/content/pdf/10.1007/978-3-319-46484-8_29.pdf. |
[10] | 任好盼, 王文明, 危德健, 等. 基于高分辨率网络的人体姿态估计方法[J]. 图学学报, 2021, 42(3): 432-438. |
REN H P, WANG W M, WEI D J, et al. Human pose estimation based on high-resolution net[J]. Journal of Graphics, 2021, 42(3): 432-438 (in Chinese).
DOI |
|
[11] | FANG H S, XIE S Q, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2353-2362. |
[12] | CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7103-7112. |
[13] | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5686-5696. |
[14] | 曾文献, 马月, 李伟光. 轻量化二维人体骨骼关键点检测算法综述[J]. 科学技术与工程, 2022, 22(16): 6377-6392. |
ZENG W X, MA Y, LI W G. A survey of lightweight two-dimensional human skeleton key point detection algorithms[J]. Science Technology and Engineering, 2022, 22(16): 6377-6392 (in Chinese). | |
[15] | CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields[EB/OL]. (2016-11-24) [2023-08-07]. http://arxiv.org/abs/1611.08050. |
[16] | OSOKIN D. Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose[EB/OL]. (2018-11-29) [2023-07- 07]. https://arxiv.longhoe.net/abs/1811.12004. |
[17] | CHENG B W, XIAO B, WANG J D, et al. Higher HRNet: scale-aware representation learning for bottom-up human pose estimation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5385-5394. |
[18] | GENG Z G, SUN K, XIAO B, et al. Bottom-up human pose estimation via disentangled keypoint regression[EB/OL]. (2021-04-06) [2023-07-07]. http://arxiv.org/abs/2104.02300. |
[19] | MAJI D, NAGORI S, MATHEW M, et al. YOLO-pose: enhancing YOLO for multi person pose estimation using object keypoint similarity loss[EB/OL]. (2022-04-14) [2023-08-12]. http://arxiv.org/abs/2204.06806. |
[20] | LI J N, WANG Y W, ZHANG S L. PolarPose: single-stage multi-person pose estimation in polar coordinates[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2023, 32: 1108-1119. |
[21] | LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 6153-6162. |
[22] | WANG C, ZHOU Y H, ZHANG F, et al. Unbiased feature position alignment for human pose estimation[J]. Neurocomputing, 2023, 537(C): 152-163. |
[23] | MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. (2023-07-14) [2023-08-17]. http://arxiv.org/abs/2307.07662. |
[24] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2023-08-17]. http://arxiv.org/abs/1704.04861. |
[25] | NEFF C, SHETH A, FURGURSON S, et al. EfficientHRNet: efficient and scalable high-resolution networks for real-time multi-person 2D human pose estimation[J]. Journal of Real-Time Image Processing, 2021, 18(4): 1037-1049. |
[26] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10778-10787. |
[27] | WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1571-1580. |
[28] | PIAO Y R, JIANG Y Y, ZHANG M, et al. PANet: patch-aware network for light field salient object detection[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 379-391. |
[29] | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7794-7803. |
[30] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Yorky: IEEE Press, 2018: 7132-7141. |
[31] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[32] | CAO Y, XU J R, WEI F Y, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 1971-1980. |
[33] | LIU H J, LIU F Q, FAN X Y, et al. Polarized self-attention: towards high-quality pixel-wise mapping[J]. Neurocomputing, 2022, 506: 158-167. |
[34] | ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with Bi-level routing attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 10323-10333. |
[35] | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted Windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 9992-10002. |
[36] | TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[EB/OL]. (2021-05-04) [2023-07-23]. http://arxiv.org/abs/2105.01601. |
[37] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Yorke: IEEE Press, 2021: 13708-13717. |
[38] | ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
[39] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[J]. Lecture Notes in Computer Science, 2014, 8693(1): 740-755. |
[1] | 李跃华, 仲新, 姚章燕, 胡彬. 基于改进YOLOv5s的着装不规范检测算法研究[J]. 图学学报, 2024, 45(3): 433-445. |
[2] | 翟永杰, 赵晓瑜, 王璐瑶, 王亚茹, 宋晓轲, 朱浩硕. IDD-YOLOv7:一种用于输电线路绝缘子多缺陷的轻量化检测方法[J]. 图学学报, 2024, 45(1): 90-101. |
[3] | 吕衡, 杨鸿宇. 一种基于时空运动信息交互建模的三维人体姿态估计方法[J]. 图学学报, 2024, 45(1): 159-168. |
[4] | 皮骏, 牛厚兴, 高志云. 融合CA-BiFPN的轻量化人体姿态估计算法[J]. 图学学报, 2023, 44(5): 868-878. |
[5] | 郝帅, 赵新生, 马旭, 张旭, 何田, 侯李祥. 基于TR-YOLOv5的输电线路多类缺陷目标检测方法[J]. 图学学报, 2023, 44(4): 667-676. |
[6] | 曹义亲, 周一纬, 徐露. 基于E-YOLOX的实时金属表面缺陷检测算法[J]. 图学学报, 2023, 44(4): 677-690. |
[7] | 李刚, 张运涛, 汪文凯, 张东阳. 采用DETR与先验知识融合的输电线路螺栓缺陷检测方法[J]. 图学学报, 2023, 44(3): 438-447. |
[8] | 毛爱坤, 刘昕明, 陈文壮, 宋绍楼. 改进YOLOv5算法的变电站仪表目标检测方法[J]. 图学学报, 2023, 44(3): 448-455. |
[9] | 孙龙飞, 刘慧, 杨奉常, 李攀. 面向医学图像层间插值的循环生成网络研究[J]. 图学学报, 2023, 44(3): 502-512. |
[10] | 熊举举, 徐杨, 范润泽, 孙少聪. 基于轻量化视觉Transformer的花卉识别[J]. 图学学报, 2023, 44(2): 271-279. |
[11] | 黄志勇, 韩莎莎, 陈致君, 姚玉, 熊彪, 马凯. 一种用于视频对象分割的仿U形网络[J]. 图学学报, 2023, 44(1): 104-111. |
[12] | 郭文, 李冬, 袁飞 . 多尺度注意力融合和抗噪声的轻量点云人脸识别模型[J]. 图学学报, 2022, 43(6): 1124-1133. |
[13] | 赵璐璐 , 王学营 , 张 翼 , 张美月 . 基于 YOLOv5s 融合 SENet 的车辆目标 检测技术研究[J]. 图学学报, 2022, 43(5): 776-782. |
[14] | 武历展, 王夏黎, 张 倩, 王炜昊, 李 超. 基于优化 YOLOv5s 的跌倒人物目标检测方法[J]. 图学学报, 2022, 43(5): 791-802. |
[15] | 胡海涛 , 杜昊晨 , 王素琴 , 石 敏 , 朱登明 , . 改进 YOLOX 的药品泡罩铝箔表面缺陷 检测方法[J]. 图学学报, 2022, 43(5): 803-814. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||