欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (3): 601-612.DOI: 10.11996/JG.j.2095-302X.2024030601

• 建筑与城市信息模型 • 上一篇    下一篇

基于BIM和语义网的轨道智能运维管理方法

何庆1,2(), 荆传玉1,2, 孙华坤1,2, 姚力3, 徐井芒1,2, 王平1,2()   

  1. 1.西南交通大学高速铁路线路工程教育部重点实验室,四川 成都 610031
    2.西南交通大学土木工程学院,四川 成都 610031
    3.中铁二院工程集团有限责任公司,四川 成都 610031
  • 收稿日期:2023-11-08 接受日期:2024-02-27 出版日期:2024-06-30 发布日期:2024-06-12
  • 通讯作者:王平(1969-),男,教授,博士。主要研究方向为高速铁路道岔设计理论、方法与评估技术、轨道不平顺及动力学。E-mail:wping@home.swjtu.edu.cn
  • 第一作者:何庆(1982-),男,教授,博士。主要研究方向为公路/铁路智能选线与BIM、交通大数据、轨道不平顺分析与管理、钢轨伤损检测与分析研究。E-mail:qhe@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金高铁联合基金重点项目(U1934214);国家自然科学基金面上项目(52372400);四川省自然科学基金创新研究群体项目(2023NSFSC1975);山东省交通厅科技项目(2022B30)

An intelligent railway operation and maintenance management approach based on BIM and semantic web

HE Qing1,2(), JING Chuanyu1,2, SUN Huakun1,2, YAO Li3, XU Jingmang1,2, WANG Ping1,2()   

  1. 1. Southwest Jiaotong University, Key Laboratory of High-speed Railway Engineering, Chengdu Sichuan 610031, China
    2. School of Civil Engineering, Southwest Jiaotong University, Chengdu Sichuan 610031, China
    3. China Railway Eryuan Engineering Group CO., LTD., Chengdu Sichuan 610031, China
  • Received:2023-11-08 Accepted:2024-02-27 Published:2024-06-30 Online:2024-06-12
  • First author:HE Qing (1982-), professor, Ph.D. His main research interests cover highway, railway intelligent route selection and BIM, traffic big data, analysis and management of track irregularity, rail damage detection and analysis research. E-mail:qhe@swjtu.edu.cn
  • Supported by:
    Key Projects of National Natural Science Foundation of China High-speed Rail Joint Fund(U1934214);General Project of National Natural Science Foundation of China(52372400);Sichuan Provincial Natural Science Foundation Innovation Research Group Project(2023NSFSC1975);Shandong Provincial Department of Transportation Science and Technology Project(2022B30)

摘要:

建筑信息模型(BIM)技术对提高轨道运维管理效率具有重要的推进作用。然而,不同的检查和维护活动产生的数据异构性高、时空关系复杂,阻碍了BIM解释和整合数据的进程。为此,开发了一个基于工业基础类(IFC)和语义Web技术的轨道运维本体(TOMO),其具有3个功能:①基于轨道运维生命周期的应用需求,简化BIM模型信息;②引入映射规则,建立数据提取与转换模块,集成多源异构数据,结构化定义数据之间复杂的时空关系;③结合数据驱动技术,研究轨道精调智能优化的方法,提供弹性决策支持。最后,以某高速铁路静检数据为例,验证了该框架的有效性与实用性,对于促进领域数据互操作性、降低运维人员劳动强度和提高运维管理智能化程度具有实际的工程指导意义。

关键词: 建筑信息模型, 运维管理, 语义Web技术, 数据驱动, 弹性决策

Abstract:

The building information modeling (BIM) technology plays a crucial role in enhancing the efficiency of railway operation and maintenance management. However, the heterogeneity of data generated from various inspection and maintenance activities, coupled with the complex spatiotemporal relationships, hinder the process of BIM data interpretation and integration. To address this challenge, a railway maintenance ontology (TOMO) based on the industry foundation classes (IFC) and semantic Web technology was developed. TOMO served three main functions: ① Simplifying BIM model information based on railway maintenance lifecycle requirements. ② Introducing mapping rules and establishing data extraction and transformation modules to integrate heterogeneous data from multiple sources, structurally defining complex spatiotemporal relationships between data. ③ Combining data-driven techniques to study intelligent optimization methods for railway fine-tuning, providing flexible decision support. Finally, using static inspection data from a high-speed railway as an example, the effectiveness and practicality of this framework were verified. This framework held practical engineering significance in promoting data interoperability in the field, reducing the labor intensity of maintenance personnel, and enhancing the intelligence of maintenance management.

Key words: building information modeling, operation and maintenance management, semantic web technology, data-driven, flexible decision

中图分类号: