图学学报 ›› 2025, Vol. 46 ›› Issue (2): 345-357.DOI: 10.11996/JG.j.2095-302X.2025020345
收稿日期:
2024-08-27
接受日期:
2024-10-25
出版日期:
2025-04-30
发布日期:
2025-04-24
第一作者:
朱晓强(1984-),男,副教授,博士。主要研究方向为智能图形图像分析。E-mail:xqzhu@shu.edu.cn
Received:
2024-08-27
Accepted:
2024-10-25
Published:
2025-04-30
Online:
2025-04-24
First author:
ZHU Xiaoqiang (1984-), associate professor, Ph.D. His main research interest covers graphic image processing. E-mail:xqzhu@shu.edu.cn
摘要:
形状建模是计算机图形学中的重要领域,其中虚拟雕刻是自由形状建模中的重要范式之一。传统的虚拟雕刻通常通过控制器对模型网格进行编辑,并在显示器上观察二维的模型可视化结果,存在视角受限、沉浸感差等问题。随着近年来虚拟现实(VR)的发展,其带来的沉浸式交互体验为虚拟雕刻的发展提供了新的可能性。将VR与虚拟雕刻相结合,以准均匀网格为基础,实现了一个VR环境中的实时雕刻系统。系统设计主要包括表面点选择算法、网格优化技术、网格变形策略和拓扑融合方法,并进一步设计自由拓扑算法为雕刻建模提供更高的自由度。针对通用的雕刻过程,基于以上算法实现了一系列用户友好的雕刻工具,可保证网格始终具有封闭、流形和无自交等优点。此外,针对任意模型间无缝融合的需求,提出了2种以符号距离场引导的模型间融合方法,分别基于网格变形和网格融合。系统所创建的模型可应用于多种场景,实验结果展示了算法的有效性和通用性,以及用户友好的特性。
中图分类号:
朱晓强, 杨伊菲. 虚拟现实环境下的自由雕刻系统[J]. 图学学报, 2025, 46(2): 345-357.
ZHU Xiaoqiang, YANG Yifei. Free sculpting system in virtual reality environment[J]. Journal of Graphics, 2025, 46(2): 345-357.
图2 不同画刷模式在不同区域的雕刻效果((a)原始狗模型背部;(b)原始狗模型颈部;(c)球形画刷雕刻背部区域;(d)球形画刷雕刻颈部区域;(e)射线画刷雕刻背部区域;(f)射线画刷雕刻颈部区域)
Fig. 2 The sculpting effects of different brush modes in different areas ((a) Dorsal area of the original dog model; (b) Neck area of the original dog model; (c) Sculpting the dorsal area with a spherical brush; (d) Sculpting the neck area with a spherical brush; (e) Sculpting the dorsal area with a radial brush; (f) Sculpting the neck area with a radial brush)
图9 Inflate操作引起的拓扑融合((a)融合前结构;(b)融合后结构)
Fig. 9 Topological fusion caused by Inflate operation ((a) Structure before fusion; (b) Structure after fusion)
图13 目标模型上点移动后结果((a)点移动后的目标模型;(b)待融合模型局部)
Fig. 13 Result after moving points on the target model((a) Target model after point movement; (b) Partial area of the model to be integrated)
图16 有无拓扑自动融合机制下的网格((a)模型内部相交;(b)模型内部无相交;(c)模型网格错乱;(d)模型网格无错乱;(e)错乱网格放大;(f)无错乱网格放大)
Fig. 16 Mesh with or without automatic topology fusion mechanism ((a) Internal intersection within the model; (b) No internal intersections within the model; (c) The model grid with distortion; (d) The model grid without distortion; (e) Magnified view of the grid with distortion; (f) Magnified view of the grid without distortion)
图17 有无位置合理性检测的网格情况((a)非法操作;(b)模型破面;(c)合法操作;(d)模型无破面)
Fig. 17 Mesh with and without position rationality detection ((a) Illegal operation; (b) Model with broken mesh; (c) Legal operation; (d) Model without broken mesh)
画刷 模式 | 雕刻 模式 | 选点 | 优化 | 变形 | 总时间 |
---|---|---|---|---|---|
球形 | Inflate | 0.092 | 0.133 | 0.001 9 | 3.944 |
Deflate | 0.071 | 0.101 | 0.001 9 | 3.993 | |
Flatten | 0.068 | 0.022 | 0.002 8 | 3.643 | |
Smooth | 0.075 | 0.028 | 0.005 4 | 3.782 | |
射线 | Inflate | 0.796 | 0.085 | 0.001 7 | 4.737 |
Deflate | 0.869 | 0.086 | 0.001 6 | 4.692 | |
Flatten | 1.009 | 0.029 | 0.002 8 | 4.897 | |
Smooth | 0.897 | 0.041 | 0.006 2 | 4.732 |
表1 操作耗时/ms
Table 1 Operation Time Consumption/ms
画刷 模式 | 雕刻 模式 | 选点 | 优化 | 变形 | 总时间 |
---|---|---|---|---|---|
球形 | Inflate | 0.092 | 0.133 | 0.001 9 | 3.944 |
Deflate | 0.071 | 0.101 | 0.001 9 | 3.993 | |
Flatten | 0.068 | 0.022 | 0.002 8 | 3.643 | |
Smooth | 0.075 | 0.028 | 0.005 4 | 3.782 | |
射线 | Inflate | 0.796 | 0.085 | 0.001 7 | 4.737 |
Deflate | 0.869 | 0.086 | 0.001 6 | 4.692 | |
Flatten | 1.009 | 0.029 | 0.002 8 | 4.897 | |
Smooth | 0.897 | 0.041 | 0.006 2 | 4.732 |
雕刻系统 | 本文 | Shapelab | ||
---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | |
系统易用性 | 5.80 | 0.86 | 5.20 | 1.08 |
功能完整性 | 4.20 | 0.77 | 6.40 | 0.63 |
建模鲁棒性 | 6.33 | 0.49 | 6.47 | 0.52 |
细节实现度 | 5.60 | 0.63 | 6.20 | 0.56 |
拓扑自由性 | 5.73 | 0.46 | 5.67 | 0.72 |
整体评价 | 5.73 | 0.59 | 6.13 | 0.35 |
表2 用户研究结果
Table 2 User research results
雕刻系统 | 本文 | Shapelab | ||
---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | |
系统易用性 | 5.80 | 0.86 | 5.20 | 1.08 |
功能完整性 | 4.20 | 0.77 | 6.40 | 0.63 |
建模鲁棒性 | 6.33 | 0.49 | 6.47 | 0.52 |
细节实现度 | 5.60 | 0.63 | 6.20 | 0.56 |
拓扑自由性 | 5.73 | 0.46 | 5.67 | 0.72 |
整体评价 | 5.73 | 0.59 | 6.13 | 0.35 |
图22 花瓶雕刻过程((a)创建花瓶主体;(b)添加把手;(c)创建悬空圆环;(d)添加整体装饰)
Fig. 22 Vase sculpting process ((a) Create the basic shape of vase; (b) Add handles; (c) Create suspended ring; (d) Add overall decoration)
[1] |
林莹莹, 蔡睿凡, 朱雨真, 等. 基于Leap Motion的虚拟现实陶艺体验系统[J]. 图学学报, 2020, 41(1): 57-65.
DOI |
LIN Y Y, CAI R F, ZHU Y Z, et al. Virtual reality pottery modeling system based on leap motion[J]. Journal of Graphics, 2020, 41(1): 57-65 (in Chinese). | |
[2] |
王浩淼, 桑胜举, 段晓东, 等. 虚拟现实环境下的协同式三维建模方法[J]. 图学学报, 2024, 45(1): 169-182.
DOI |
WANG H M, SANG S J, DUAN X D, et al. Collaborative 3D modeling technique in virtual reality[J]. Journal of Graphics, 2024, 45(1): 169-182 (in Chinese).
DOI |
|
[3] | GEIGER A, ZIEGLER J, STILLER C. StereoScan: dense 3D reconstruction in real-time[C]// 2011 IEEE Intelligent Vehicles Symposium. New York: IEEE Press, 2011: 963-968. |
[4] | IZADI S, KIM D, HILLIGES O, et al. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera[C]// The 24th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2011: 559-568. |
[5] | MOURAGNON E, LHUILLIER M, DHOME M, et al. Real time localization and 3D reconstruction[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 363-370. |
[6] | DAVIES R H, COOTES T F, TWINING C J, et al. An information theoretic approach to statistical shape modelling[EB/OL]. [2024-06-27]. https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/Papers/bmvc01_davies.pdf. |
[7] | WANG H X, MARKOSIAN L. Free-form sketch[C]// The 4th Eurographics Workshop on Sketch-based Interfaces and Modeling. New York: ACM, 2007: 53-58. |
[8] | YU E, ARORA R, BÆRENTZEN J A, et al. Piecewise-smooth surface fitting onto unstructured 3D sketches[J]. ACM Transactions on Graphics, 2022, 41(4): 88. |
[9] | MIKAEILI A, PEREL O, SAFAEE M, et al. SKED: sketch-guided text-based 3D editing[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 14561-14573. |
[10] | LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65. |
[11] | WONG J P Y, LAU R W H, MA L Z. Virtual 3D sculpting[J]. The Journal of Visualization and Computer Animation, 2000, 11(3): 155-166. |
[12] | MCDONNELL K T, QIN H, WLODARCZYK R A. Virtual clay: a real-time sculpting system with haptic toolkits[C]// The 2001 Symposium on Interactive 3D Graphics. New York: ACM, 2001: 179-190. |
[13] | KEEFE D F, FELIZ D A, MOSCOVICH T, et al. CavePainting: a fully immersive 3D artistic medium and interactive experience[C]// The 2001 Symposium on Interactive 3D Graphics. New York: ACM, 2001: 85-93. |
[14] | GALYEAN T A, HUGHES J F. Sculpting: an interactive volumetric modeling technique[J]. ACM SIGGRAPH Computer Graphics, 1991, 25(4): 267-274. |
[15] | LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163-169. |
[16] | STÃNCULESCU L, CHAINE R, CANI M P. Freestyle: sculpting meshes with self-adaptive topology[J]. Computers & Graphics, 2011, 35(3): 614-622. |
[17] | JANG S A, KIM H I, WOO W, et al. AiRSculpt: a wearable augmented reality 3D sculpting system[C]// The 2nd International Conference on Distributed, Ambient, and Pervasive Interactions. Cham: Springer, 2014: 130-141. |
[18] | LU P, SHENG B, LUO S M, et al. Image-based non-photorealistic rendering for realtime virtual sculpting[J]. Multimedia Tools and Applications, 2015, 74(21): 9697-9714. |
[19] | CALLENS E, DANIEAU F, COSTES A, et al. A tangible surface for digital sculpting in virtual environments[C]// The 11th International Conference on Haptics:Science, Technology, and Applications. Cham: Springer, 2018: 157-168. |
[20] | MILLIEZ A, WAND M, CANI M, et al. Mutable elastic models for sculpting structured shapes[J]. Computer Graphics Forum, 2013, 32(2pt1): 21-30. |
[21] | GAO Z H, LI J W, WANG H Q, et al. DigiClay: an interactive installation for virtual pottery using motion sensing technology[C]// The 4th International Conference on Virtual Reality. New York: ACM, 2018: 126-132. |
[22] | 朱晓强, 余涛. 头戴设备VR环境下基于网格变形的交互雕刻建模[J]. 浙江大学学报(工学版), 2018, 52(3): 599-604. |
ZHU X Q, YU T. Interactive sculpture modeling based on mesh deformation in HMD VR environment[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(3): 599-604 (in Chinese). | |
[23] | PARKER S G, BIGLER J, DIETRICH A, et al. Optix: a general purpose ray tracing engine[J]. ACM Transactions on Graphics, 2010, 29(4): 1-13. |
[24] | FERLEY E, CANI M P, GASCUEL J D. Practical volumetric sculpting[J]. The Visual Computer, 2000, 16(8): 469-480. |
[25] | FERLEY E, CANI M P, GASCUEL J D. Resolution adaptive volume sculpting[J]. Graphical Models, 2001, 63(6): 459-478. |
[26] | CHEN C W, HU M C, CHU W T, et al. A real-time sculpting and terrain generation system for interactive content creation[J]. IEEE Access, 2021, 9: 114914-114928. |
[27] | BRESENHAM J E. Algorithm for computer control of a digital plotter[J]. IBM Systems Journal, 1965, 4(1): 25-30. |
[28] | GAO Z H, WANG H Q, FENG G S, et al. RealPot: an immersive virtual pottery system with handheld haptic devices[J]. Multimedia Tools and Applications, 2019, 78(18): 26569-26596. |
[29] | DASHTI S, PRAKASH E, NAVARRO-NEWBALL A A, et al. PotteryVR: virtual reality pottery[J]. The Visual Computer, 2022, 38(12): 4035-4055. |
[30] | POOLE B, JAIN A, BARRON J T, et al. DreamFusion:text-to-3D using 2D diffusion[EB/OL]. [2024-10-15]. https://arxiv.org/abs/2209.14988. |
[31] | JAMBON C, KERBL B, KOPANAS G, et al. NeRFshop: interactive editing of neural radiance fields[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2023, 6(1): 1. |
[32] | DING L H, DONG S C, HUANG Z P, et al. Text-to-3D generation with bidirectional diffusion using both 2D and 3D priors[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 5115-5124. |
[1] | 杨浩中, 孔笑宇, 辜睿坤, 汪淼. 虚拟现实中的大模型技术研究进展与趋势[J]. 图学学报, 2024, 45(6): 1117-1131. |
[2] | 栾帅, 吴健, 樊润泽, 王莉莉. 基于观察质量场的虚拟对象协同操作方法[J]. 图学学报, 2024, 45(6): 1338-1348. |
[3] | 任洋甫, 于歌, 傅月瑶, 胥森哲, 何煜, 王巨宏, 张松海. 虚拟现实中场景和时间对用户空间方向认知的影响[J]. 图学学报, 2024, 45(6): 1349-1363. |
[4] | 严家豪, 吕健, 侯宇康, 莫心祝. 虚拟现实中眼动交互频率对视觉疲劳影响的研究[J]. 图学学报, 2024, 45(3): 528-538. |
[5] | 黄家晖, 穆太江. 动态三维场景重建研究综述[J]. 图学学报, 2024, 45(1): 14-25. |
[6] | 王浩淼, 桑胜举, 段晓东, 张伟华, 陶体伟, 马婷. 虚拟现实环境下的协同式三维建模方法[J]. 图学学报, 2024, 45(1): 169-182. |
[7] | 韩兆阳, 翁冬冬, 郭署山, 贺文杰, 江海燕, 李冬. 一种基于简易标记点编码的光学跟踪系统[J]. 图学学报, 2023, 44(5): 997-1012. |
[8] | 谢红霞, 胡毓宁, 张赟, 王亚奇, 杜辉, 秦爱红. 全景图像视频的场景分析与内容处理方法综述[J]. 图学学报, 2023, 44(4): 640-657. |
[9] | 朱永宁 , 葛 婷 , 杜盛瑀 , 楼泽如 , 王建民 . 虚拟现实全景流体绘画系统的可用性研究[J]. 图学学报, 2021, 42(5): 833-840. |
[10] | 赵建军, 黄竣鹏, 陈俊良. 基于 Leap Motion 的电影前期预演 人机交互方法[J]. 图学学报, 2021, 42(1): 71-78. |
[11] | 郑明钰, 李家和, 张 晗, 骆岩林, 申佳丽, 朱小明. 支持力反馈的沉浸式物理学习环境的构建 [J]. 图学学报, 2021, 42(1): 79-86. |
[12] | 滕 健, 黄佳慧, 宫 凯 . 基于 BCI 的虚拟现实模拟驾驶教学系统设计[J]. 图学学报, 2020, 41(2): 217-223. |
[13] | 邱远航 1, 孙贤波 1, 刘勇弟 1, 蔡正清 1, 徐宏勇 2 . 污水处理厂虚拟现实教学软件开发及应用[J]. 图学学报, 2020, 41(2): 233-236. |
[14] | 林莹莹, 蔡睿凡, 朱雨真, 唐祥峻, 金小刚. 基于Leap Motion 的虚拟现实陶艺体验系统[J]. 图学学报, 2020, 41(1): 57-65. |
[15] | 王 茹, 权超超 . 公路立交 BIM 参数化快速精确建模方法研究[J]. 图学学报, 2019, 40(4): 766-770. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||