图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1349-1363.DOI: 10.11996/JG.j.2095-302X.2024061349
任洋甫1,2,3(), 于歌4, 傅月瑶1, 胥森哲5, 何煜4, 王巨宏6, 张松海2,3,1(
)
收稿日期:
2024-07-05
接受日期:
2024-10-08
出版日期:
2024-12-31
发布日期:
2024-12-24
通讯作者:
张松海(1978-),男,副教授,博士。主要研究方向为计算机图形学与虚拟现实、图像/视频处理。E-mail:shz@tsinghua.edu.cn第一作者:
任洋甫(1988-),男,博士研究生。主要研究方向为计算机图形学与虚拟现实。E-mail:ryf21@mails.tsinghua.edu.cn
基金资助:
REN Yangfu1,2,3(), YU Ge4, FU Yueyao1, XU Senzhe5, HE Yu4, WANG Juhong6, ZHANG Songhai2,3,1(
)
Received:
2024-07-05
Accepted:
2024-10-08
Published:
2024-12-31
Online:
2024-12-24
Contact:
ZHANG Songhai (1978-), associate professor, Ph.D. His main research interests cover computer graphics and virtual reality, image/video processing. E-mail:shz@tsinghua.edu.cnFirst author:
REN Yangfu (1988-), PhD candidate. His main research interests cover computer graphics and virtual reality. E-mail:ryf21@mails.tsinghua.edu.cn
Supported by:
摘要:
方向感是用户通过观察或漫游场景,根据个人感知建立心理地图,并理解和判断地图信息,产生对方向、角度、距离等信息判断的能力。在心理学和医学等领域,大量研究表明方向感由空间记忆、空间感知、空间想象等多重因素影响。在虚拟环境中,用户同样依赖这种能力判断方向,利用虚拟设备获取场景信息。本研究主要讨论用户如何通过空间记忆、感知与想象等能力在虚拟场景中判断方位。研究定义了用户的方向感度量包括准确率和效率2个方面,其中准确率是用户与目标朝向和位置的角度误差和距离误差,效率是用户判断方向的决策时间和到达目标的移动时间,通过6个实验,旨在探究视觉场景差异对用户方向感的影响。实验结果显示:①视觉信息是虚拟现实(VR)中用户判断方向的重要依据;②在场景结构相似的前提下,较小空间和较多物品的设置能够提升用户的方向感;③在视觉范围不变的前提下,场景风格的变化对用户方向感的影响较小。另外,用户方位判断的准确率还受到决策时间和移动时间的影响,其中移动时间的影响更为显著,而决策时间则影响相对较小。本研究的发现有助于VR场景构建、度量用户方向感、以及优化场景布局和提高用户导航能力。
中图分类号:
任洋甫, 于歌, 傅月瑶, 胥森哲, 何煜, 王巨宏, 张松海. 虚拟现实中场景和时间对用户空间方向认知的影响[J]. 图学学报, 2024, 45(6): 1349-1363.
REN Yangfu, YU Ge, FU Yueyao, XU Senzhe, HE Yu, WANG Juhong, ZHANG Songhai. The impact of scenery and time on spatial orientation cognition in virtual reality[J]. Journal of Graphics, 2024, 45(6): 1349-1363.
图1 6个虚拟实验场景((a)场景1;(b)场景2;(c)场景3;(d)场景4;(e)场景5;(f) 场景6)
Fig. 1 Six virtual experimental scenes ((a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4; (e) Scenario 5; (f) Scenario 6)
场景 | 风格 | 结构 | 尺寸/m | 物品数量 |
---|---|---|---|---|
场景1 | 室内宽阔 | 规则正方形 | 20×20 | 4件家具 |
场景2 | 室内狭窄 | 规则正方形 | 10×10 | 22件家具 |
场景3 | 室内宽阔 | 规则正方形 | 20×20 | 22件家具 |
场景4 | 室内狭窄 | 规则正方形 | 10×10 | 4件家具 |
场景5 | 室外 | 无规则 | 50×50 | 6间房屋及 若干植被 |
场景6 | 无 | 无规则 | 无限 | 0 |
表1 场景信息对比
Table 1 Comparison of scene information
场景 | 风格 | 结构 | 尺寸/m | 物品数量 |
---|---|---|---|---|
场景1 | 室内宽阔 | 规则正方形 | 20×20 | 4件家具 |
场景2 | 室内狭窄 | 规则正方形 | 10×10 | 22件家具 |
场景3 | 室内宽阔 | 规则正方形 | 20×20 | 22件家具 |
场景4 | 室内狭窄 | 规则正方形 | 10×10 | 4件家具 |
场景5 | 室外 | 无规则 | 50×50 | 6间房屋及 若干植被 |
场景6 | 无 | 无规则 | 无限 | 0 |
图2 整体的实验流程((a)注视箭头;(b)查找场景中的球体;(c)靠近球体变红色;(d)确认方位)
Fig. 2 Overall experimental procedure ((a) Gaze arrow; (b) Find the sphere in the scene; (c) Turning red near the sphere; (d) Confirmation of orientation)
阶段 | SSQ得分(均值±标准偏差) |
---|---|
实验前(Pre-Test) | 0.750±2.173 |
实验1 (Test 1) | 3.853±5.892 |
实验2 (Test 2) | 4.342±8.206 |
实验3 (Test 3) | 2.456±4.269 |
实验4 (Test 4) | 4.293±6.825 |
实验5 (Test 5) | 5.150±10.002 |
实验6 (Test 6) | 7.006±11.793 |
表2 实验中各阶段SSQ得分(均值±标准偏差)
Table 2 SSQ Scores for each stage of the experiment (Mean±Standard deviation)
阶段 | SSQ得分(均值±标准偏差) |
---|---|
实验前(Pre-Test) | 0.750±2.173 |
实验1 (Test 1) | 3.853±5.892 |
实验2 (Test 2) | 4.342±8.206 |
实验3 (Test 3) | 2.456±4.269 |
实验4 (Test 4) | 4.293±6.825 |
实验5 (Test 5) | 5.150±10.002 |
实验6 (Test 6) | 7.006±11.793 |
图3 不同场景用户的准确率和效率的统计分析结果((a)角度误差;(b)距离误差;(c)决策时间;(d)移动时间)
Fig. 3 Statistical analysis results of user accuracy and efficiency in different scenes ((a) Angle error; (b) Distance error; (c) Decision time; (d) Moving time)
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 74.87 | 77.39 | 80.28 | 82.56 | 81.33 | 72.06 | |
女 | 中位数 | 33.58 | 37.31 | 60.17 | 50.45 | 59.85 | 55.50 |
标准差 | 71.17 | 73.20 | 69.89 | 67.26 | 70.11 | 60.73 | |
均值 | 70.20 | 70.14 | 72.39 | 76.12 | 60.54 | 79.96 | |
男 | 中位数 | 47.29 | 24.49 | 31.91 | 25.88 | 29.70 | 55.48 |
标准差 | 66.65 | 68.35 | 70.17 | 73.96 | 62.27 | 65.42 |
表3 各场景下角度误差在性别中的差异
Table 3 Differences in angle error by gender in each scene
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 74.87 | 77.39 | 80.28 | 82.56 | 81.33 | 72.06 | |
女 | 中位数 | 33.58 | 37.31 | 60.17 | 50.45 | 59.85 | 55.50 |
标准差 | 71.17 | 73.20 | 69.89 | 67.26 | 70.11 | 60.73 | |
均值 | 70.20 | 70.14 | 72.39 | 76.12 | 60.54 | 79.96 | |
男 | 中位数 | 47.29 | 24.49 | 31.91 | 25.88 | 29.70 | 55.48 |
标准差 | 66.65 | 68.35 | 70.17 | 73.96 | 62.27 | 65.42 |
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 1.62 | 1.54 | 1.41 | 1.56 | 1.61 | 1.59 | |
女 | 中位数 | 1.50 | 1.44 | 1.49 | 1.46 | 1.60 | 1.54 |
标准差 | 0.72 | 0.60 | 0.63 | 0.74 | 0.67 | 0.66 | |
均值 | 1.67 | 1.56 | 1.50 | 1.66 | 1.59 | 1.49 | |
男 | 中位数 | 1.69 | 1.64 | 1.33 | 1.62 | 1.54 | 1.51 |
标准差 | 0.64 | 0.61 | 0.68 | 0.69 | 0.74 | 0.64 |
表4 各场景下距离误差在性别中的差异
Table 4 Differences in distance error by gender in each scene
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 1.62 | 1.54 | 1.41 | 1.56 | 1.61 | 1.59 | |
女 | 中位数 | 1.50 | 1.44 | 1.49 | 1.46 | 1.60 | 1.54 |
标准差 | 0.72 | 0.60 | 0.63 | 0.74 | 0.67 | 0.66 | |
均值 | 1.67 | 1.56 | 1.50 | 1.66 | 1.59 | 1.49 | |
男 | 中位数 | 1.69 | 1.64 | 1.33 | 1.62 | 1.54 | 1.51 |
标准差 | 0.64 | 0.61 | 0.68 | 0.69 | 0.74 | 0.64 |
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 2.73 | 2.20 | 2.90 | 3.80 | 2.42 | 3.39 | |
女 | 中位数 | 2.44 | 1.99 | 2.52 | 2.50 | 1.97 | 2.22 |
标准差 | 1.96 | 1.36 | 2.06 | 3.54 | 1.65 | 5.91 | |
均值 | 3.88 | 2.57 | 2.83 | 4.09 | 2.26 | 2.86 | |
男 | 中位数 | 3.16 | 2.38 | 2.31 | 3.20 | 1.98 | 2.39 |
标准差 | 3.46 | 1.68 | 1.62 | 3.38 | 1.45 | 2.43 |
表5 各场景下决策时间在性别中的差异
Table 5 Differences in decision time by gender in each scene
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 2.73 | 2.20 | 2.90 | 3.80 | 2.42 | 3.39 | |
女 | 中位数 | 2.44 | 1.99 | 2.52 | 2.50 | 1.97 | 2.22 |
标准差 | 1.96 | 1.36 | 2.06 | 3.54 | 1.65 | 5.91 | |
均值 | 3.88 | 2.57 | 2.83 | 4.09 | 2.26 | 2.86 | |
男 | 中位数 | 3.16 | 2.38 | 2.31 | 3.20 | 1.98 | 2.39 |
标准差 | 3.46 | 1.68 | 1.62 | 3.38 | 1.45 | 2.43 |
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 6.48 | 4.79 | 5.82 | 6.77 | 4.63 | 6.97 | |
女 | 中位数 | 5.59 | 4.59 | 4.28 | 5.32 | 4.62 | 6.12 |
标准差 | 4.52 | 3.02 | 5.33 | 5.06 | 2.49 | 4.41 | |
均值 | 6.80 | 5.93 | 5.74 | 6.96 | 6.14 | 7.44 | |
男 | 中位数 | 5.66 | 5.47 | 5.14 | 5.99 | 4.59 | 6.47 |
标准差 | 3.52 | 3.52 | 3.40 | 3.99 | 7.17 | 5.01 |
表6 各场景下移动时间在性别中的差异
Table 6 Differences in movement time by gender in each scene
性别 | 指标 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|---|
均值 | 6.48 | 4.79 | 5.82 | 6.77 | 4.63 | 6.97 | |
女 | 中位数 | 5.59 | 4.59 | 4.28 | 5.32 | 4.62 | 6.12 |
标准差 | 4.52 | 3.02 | 5.33 | 5.06 | 2.49 | 4.41 | |
均值 | 6.80 | 5.93 | 5.74 | 6.96 | 6.14 | 7.44 | |
男 | 中位数 | 5.66 | 5.47 | 5.14 | 5.99 | 4.59 | 6.47 |
标准差 | 3.52 | 3.52 | 3.40 | 3.99 | 7.17 | 5.01 |
图4 不同场景实验结果之间的相关性分析((a)场景1;(b)场景2;(c)场景3;(d)场景4;(e)场景5;(f)场景6)
Fig. 4 Correlation analysis of experimental results between different scenes ((a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4; (e) Scenario 5; (f) Scenario 6))
变量 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|
角度误差 | -0.018 | -0.028 | 0.030 | -0.770 | -0.182 | 0.003 |
位置误差 | 0.183 | 0.073 | 0.088 | 0.154 | 0.054 | -0.138 |
决策时间 | 0.032 | 0.174 | 0.078 | 0.039 | 0.134 | 0.126 |
移动时间 | -0.047 | -0.001 | 0.130 | 0.080 | -0.012 | -0.099 |
表7 不同场景年龄与实验结果的相关性
Table 7 Correlation between age and experimental results in different scenes
变量 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|
角度误差 | -0.018 | -0.028 | 0.030 | -0.770 | -0.182 | 0.003 |
位置误差 | 0.183 | 0.073 | 0.088 | 0.154 | 0.054 | -0.138 |
决策时间 | 0.032 | 0.174 | 0.078 | 0.039 | 0.134 | 0.126 |
移动时间 | -0.047 | -0.001 | 0.130 | 0.080 | -0.012 | -0.099 |
变量 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|
角度误差 | 0.034 | 0.051 | 0.562 | 0.046 | 0.154 | -0.063 |
位置误差 | -0.038 | -0.018 | -0.068 | -0.065 | 0.008 | 0.076 |
决策时间 | -0.206 | -0.121 | 0.017 | -0.042 | 0.052 | 0.056 |
移动时间 | -0.039 | -0.172 | 0.009 | -0.020 | -0.146 | -0.050 |
表8 不同场景性别与实验结果的相关性
Table 8 Correlation between gender and experimental results in different scenes
变量 | 场景1 | 场景2 | 场景3 | 场景4 | 场景5 | 场景6 |
---|---|---|---|---|---|---|
角度误差 | 0.034 | 0.051 | 0.562 | 0.046 | 0.154 | -0.063 |
位置误差 | -0.038 | -0.018 | -0.068 | -0.065 | 0.008 | 0.076 |
决策时间 | -0.206 | -0.121 | 0.017 | -0.042 | 0.052 | 0.056 |
移动时间 | -0.039 | -0.172 | 0.009 | -0.020 | -0.146 | -0.050 |
[1] | BARHORST-CATES E M, STOKER J, STEFANUCCI J K, et al. Using virtual reality to assess dynamic self-motion and landmark cues for spatial updating in children and adults[J]. Memory & Cognition, 2021, 49(3): 572-585. |
[2] | BÜRGER D, PASTEL S, CHEN C H, et al. Suitability test of virtual reality applications for older people considering the spatial orientation ability[J]. Virtual Reality, 2023, 27(3): 1751-1764. |
[3] | JIANG C F, LI Y S. Virtual hospital-a computer-aided platform to evaluate the sense of direction[C]// The 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE Press, 2007: 2361-2364. |
[4] | COUGHLAN G, LACZÓ J, HORT J, et al. Spatial navigation deficits—overlooked cognitive marker for preclinical Alzheimer disease?[J]. Nature Reviews Neurology, 2018, 14(8): 496-506. |
[5] | COUTROT A, SCHMIDT S, COUTROT L, et al. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance[J]. PLoS One, 2019, 14(3): e0213272. |
[6] | SPIERS H J, COUTROT A, HORNBERGER M. Explaining world‐wide variation in navigation ability from millions of people: citizen science project sea hero quest[J]. Topics in Cognitive Science, 2023, 15(1): 120-138. |
[7] | 牟炜民, 赵民涛, 李晓鸥. 人类空间记忆和空间巡航[J]. 心理科学进展, 2006, 14(4): 497-504. |
MOU W M, ZHAO M T, LI X O. Human spatial memory and spatial navigation[J]. Advances in Psychological Science, 2006, 14(4): 497-504. (in Chinese) | |
[8] | 许琴, 罗宇, 刘嘉. 方向感的加工机制及影响因素[J]. 心理科学进展, 2010, 18(8): 1208-1221. |
XU Q, LUO Y, LIU J. The mechanism of sense of direction and its modulating factors[J]. Advances in Psychological Science, 2010, 18(8): 1208-1221. (in Chinese) | |
[9] | 李晶, 张侃. 对称场景中朝向一致性对内在参照系的影响[J]. 心理学报, 2011, 43(3): 221-228. |
LI J, ZHANG K. The effect of orientation coincidence of objects on intrinsic frame of reference system in symmetrical scene[J]. Acta Psychologica Sinica, 2011, 43(3): 221-228. (in Chinese) | |
[10] | 周希, 宛小昂, 杜頔康, 等. 不连续虚拟现实空间中的再定向[J]. 心理学报, 2016, 48(8): 924-932. |
ZHOU X, WAN X A, DU D K, et al. Reorientation in uncontinuous virtual reality space[J]. Acta Psychologica Sinica, 2016, 48(8): 924-932. (in Chinese)
DOI |
|
[11] |
张凤翔, 陈美璇, 蒲艺, 等. 空间导航能力个体差异的多层次形成机制[J]. 心理科学进展, 2023, 31(9): 1642-1664.
DOI |
ZHANG F X, CHEN M X, PU Y, et al. Individual differences in spatial navigation: a multi-scale perspective[J]. Advances in Psychological Science, 2023, 31(9): 1642-1664. (in Chinese)
DOI |
|
[12] | DARKEN R P, SIBERT J L. Wayfinding strategies and behaviors in large virtual worlds[C]// 1996 SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 1996: 142-149. |
[13] | RUDDLE R A, LESSELS S. Three levels of metric for evaluating wayfinding[J]. Presence: Teleoperators and Virtual Environments, 2006, 15(6): 637-654. |
[14] | SMITH S P, DU’MONT S. Measuring the effect of gaming experience on virtual environment navigation tasks[C]// 2009 IEEE Symposium on 3D User Interfaces. New York: IEEE Press, 2009: 3-10. |
[15] | MARPLES D, GLEDHILL D, CARTER P. The effect of lighting, landmarks and auditory cues on human performance in navigating a virtual maze[C]// 2020 Symposium on Interactive 3D Graphics and Games. New York: ACM, 2020: 16. |
[16] | MAIDENBAUM S, PATEL A, GEDANKIEN T, et al. The effect of navigational aids on spatial memory in virtual reality[C]// 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops. New York: IEEE Press, 2020: 644-645. |
[17] | DONG W H, QIN T, YANG T Y, et al. Wayfinding behavior and spatial knowledge acquisition: are they the same in virtual reality and in real-world environments?[J]. Annals of the American Association of Geographers, 2022, 112(1): 226-246. |
[18] | SIGURDARSON S, MILNE A P, FEUEREISSEN D, et al. Can physical motions prevent disorientation in naturalistic VR?[C]// 2012 IEEE Virtual Reality Workshops. New York: IEEE Press, 2012: 31-34. |
[19] | KOTLAREK J, LIN I C, MA K L. Improving spatial orientation in immersive environments[C]// 2018 ACM Symposium on Spatial User Interaction. New York: ACM, 2018: 79-88. |
[20] | DARKEN R P, CEVIK H. Map usage in virtual environments: orientation issues[C]// 1999 IEEE Virtual Reality. New York: IEEE Press, 1999: 133-140. |
[21] | MONTEIRO D, WANG X, LIANG H N, et al. Spatial knowledge acquisition in virtual and physical reality: a comparative evaluation[C]// The 7th International Conference on Virtual Reality. New York: IEEE Press, 2021: 308-313. |
[22] |
KIMURA K, REICHERT J F, OLSON A, et al. Orientation in virtual reality does not fully measure up to the real-world[J]. Scientific Reports, 2017, 7(1): 18109.
DOI PMID |
[23] | HSIEH T J, KUO Y H, NIU C K. Utilizing HMD VR to improve the spatial learning and wayfinding effects in the virtual maze[C]// The 20th International Conference on HCI International 2018-Posters' Extended Abstracts. Cham: Springer, 2018: 38-42. |
[24] | NGUYEN-VO T, RIECKE B E, STUERZLINGER W. Moving in a box: improving spatial orientation in virtual reality using simulated reference frames[C]// 2017 IEEE Symposium on 3D User Interfaces. New York: IEEE Press, 2017: 207-208. |
[25] | NGUYEN-VO T, RIECKE B E, STUERZLINGER W. Simulated reference frame: a cost-effective solution to improve spatial orientation in VR[C]// 2018 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2018: 415-422. |
[26] |
王枫红, 陈岱琳, 高紫婷, 等. HUD道路引导空间位置对新手驾驶人的影响[J]. 图学学报, 2024, 45(4): 856-867.
DOI |
WANG F H, CHEN D L, GAO Z T, et al. The effect of spatial location of HUD's road guidance on novice drivers[J]. Journal of Graphics, 2024, 45(4): 856-867. (in Chinese) | |
[27] |
陈嬿, 张琼文, 王嘉琪, 等. 地图符号与情绪效价对AR地图用户空间记忆的影响研究[J]. 图学学报, 2023, 44(2): 399-407.
DOI |
CHEN Y, ZHANG Q W, WANG J Q, et al. Effects of map symbols and emotional valence on AR map users' spatial memory[J]. Journal of Graphics, 2023, 44(2): 399-407. (in Chinese)
DOI |
|
[28] | 刘相, 陶靖, 刘玉庆, 等. 空间站舱内定向虚拟训练方法研究[J]. 载人航天, 2016, 22(5): 645-650. |
LIU X, TAO J, LIU Y Q, et al. Study on virtual reality based training methods for spatial orientation in spacecraft[J]. Manned Spaceflight, 2016, 22(5): 645-650. (in Chinese) | |
[29] | KYRITSIS M, GULLIVER S R, MORAR S. Cognitive and environmental factors influencing the process of spatial knowledge acquisition within virtual reality environments[J]. International Journal of Artificial Life Research, 2014, 4(1): 43-58. |
[30] | KÖNIG S U, KESHAVA A, CLAY V, et al. Embodied spatial knowledge acquisition in immersive virtual reality: comparison to map exploration[J]. Frontiers in Virtual Reality, 2021, 2: 625548. |
[31] | SASAKI T, VALLANCE M. On being lost: evaluating spatial recognition in a virtual environment[J]. International Journal of Virtual and Augmented Reality, 2018, 2(2): 38-58. |
[32] | SHIMADA K, HIROI K, KAWAGUCHI N, et al. Measurement methods of spatial ability using a virtual reality system[C]// The 9th International Conference on Mobile Computing and Ubiquitous Networking. New York: IEEE Press, 2016: 1-6. |
[33] | AFANA J, MARSHALL J, TENNENT P. Manipulating rotational perception in virtual reality[C]// 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct. New York: IEEE Press, 2021: 201-206. |
[34] | PASTEL S, BÜRGER D, CHEN C H, et al. Comparison of spatial orientation skill between real and virtual environment[J]. Virtual Reality, 2022, 26(1): 91-104. |
[35] | ZHANG S H, ZHANG S K, XIE W Y, et al. Fast 3D indoor scene synthesis by learning spatial relation priors of objects[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(9): 3082-3092. |
[36] | ZHANG S K, LI Y X, HE Y, et al. MageAdd: real-time interaction simulation for scene synthesis[C]// The 29th ACM International Conference on Multimedia. New York: ACM, 2021: 965-973. |
[37] | LIU J H, ZHANG S K, ZHANG C Y, et al. Controllable procedural generation of landscapes[EB/OL]. [2024-05-05]. https://openreview.net/forum?id=RCD9rwbqt4. |
[38] | ZHANG S K, TAM H, LI Y K, et al. SceneDirector: interactive scene synthesis by simultaneously editing multiple objects in real-time[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(8): 4558-4569. |
[39] | ZHANG S K, LIU J H, LI Y K, et al. Automatic generation of commercial scenes[C]// The 31st ACM International Conference on Multimedia. New York: ACM, 2023: 1137-1147. |
[1] | 杨浩中, 孔笑宇, 辜睿坤, 汪淼. 虚拟现实中的大模型技术研究进展与趋势[J]. 图学学报, 2024, 45(6): 1117-1131. |
[2] | 刘灿锋, 孙浩, 东辉. 结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究[J]. 图学学报, 2024, 45(6): 1256-1265. |
[3] | 栾帅, 吴健, 樊润泽, 王莉莉. 基于观察质量场的虚拟对象协同操作方法[J]. 图学学报, 2024, 45(6): 1338-1348. |
[4] | 赵芳华, 张航源, 丁满, 李文华, 裴卉宁. 智能汽车内外饰造型意象耦合度评价方法研究[J]. 图学学报, 2024, 45(5): 1106-1116. |
[5] | 李松洋, 王雪婷, 陈相龙, 陈恩庆. 基于骨骼点动态时域滤波的人体动作识别[J]. 图学学报, 2024, 45(4): 760-769. |
[6] | 艾列富, 陶勇, 蒋常玉. 基于全局注意力的正交融合图像描述符[J]. 图学学报, 2024, 45(3): 472-481. |
[7] | 严家豪, 吕健, 侯宇康, 莫心祝. 虚拟现实中眼动交互频率对视觉疲劳影响的研究[J]. 图学学报, 2024, 45(3): 528-538. |
[8] | 王浩淼, 桑胜举, 段晓东, 张伟华, 陶体伟, 马婷. 虚拟现实环境下的协同式三维建模方法[J]. 图学学报, 2024, 45(1): 169-182. |
[9] | 韩兆阳, 翁冬冬, 郭署山, 贺文杰, 江海燕, 李冬. 一种基于简易标记点编码的光学跟踪系统[J]. 图学学报, 2023, 44(5): 997-1012. |
[10] | 谢红霞, 胡毓宁, 张赟, 王亚奇, 杜辉, 秦爱红. 全景图像视频的场景分析与内容处理方法综述[J]. 图学学报, 2023, 44(4): 640-657. |
[11] | 严圆, 高欣健, 高隽, 王昕, 程前. 基于非局部信息的大气偏振模式生成方法[J]. 图学学报, 2023, 44(3): 551-559. |
[12] | 王玉萍, 曾毅, 李胜辉, 张磊. 一种基于Transformer的三维人体姿态估计方法[J]. 图学学报, 2023, 44(1): 139-145. |
[13] | 王浩, 郑德华, 刘存泰, 程宇翔, 胡创. 基于 SHOT 特征描述子的自动提取球形标靶方法研究 [J]. 图学学报, 2022, 43(5): 849-857. |
[14] | 彭国琴, 张浩, 徐丹. 基于域自适应的云南重彩画无监督情感识别[J]. 图学学报, 2022, 43(4): 641-650. |
[15] | 贺琪, 李汶龙, 宋巍, 杜艳玲, 黄冬梅, 耿立佳 . 结合残差时空注意力机制的海面温度预测算法[J]. 图学学报, 2022, 43(4): 677-684. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||