欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (2): 358-368.DOI: 10.11996/JG.j.2095-302X.2025020358

• 计算机图形学与虚拟现实 • 上一篇    下一篇

融合知识迁移的灵巧手抓取姿态生成

张旭辉(), 郭宇(), 黄少华, 郑冠冠, 汤鹏洲, 马旭升   

  1. 南京航空航天大学机电学院,江苏 南京 210016
  • 收稿日期:2024-08-06 接受日期:2024-11-20 出版日期:2025-04-30 发布日期:2025-04-24
  • 通讯作者:郭宇(1971-),男,教授,博士。主要研究方向为增强装配与人机协作等。E-mail:guoyu@nuaa.edu.cn
  • 第一作者:张旭辉(1999-),男,硕士研究生。主要研究方向为人机协作。E-mail:xuhuizhang@nuaa.edu.cn
  • 基金资助:
    南京市重大科技专项(202309018)

Grasp pose generation for dexterous hand with integrated knowledge transfer

ZHANG Xuhui(), GUO Yu(), HUANG Shaohua, ZHENG Guanguan, TANG Pengzhou, MA Xusheng   

  1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu 210016, China
  • Received:2024-08-06 Accepted:2024-11-20 Published:2025-04-30 Online:2025-04-24
  • First author:ZHANG Xuhui (1999-), master student. His main research interest covers human-machine collaboration. E-mail:xuhuizhang@nuaa.edu.cn
  • Supported by:
    Nanjing Major Science and Technology Projects(202309018)

摘要:

五指灵巧手抓取姿态的生成在灵巧手抓取任务上具有重要意义。首先,针对不同使用意图下人手对工具的抓取姿态不同的特点,构建了基于意图的抓取姿态生成网络,强调了不同意图下抓取的功能性;其次,针对在有限的数据下训练的抓取姿态生成网络无法适应所有类内工具的问题,提出了一种融合知识迁移的抓取姿态生成方法,改进知识迁移方法以适应各种姿态的类内目标工具以生成功能性抓取,同时优化手部指间自碰撞问题;最终,在构建人手与五指灵巧手的抓取姿态映射关系时,优化基于关键点对应关系的映射规则,实现了五指灵巧手在不同意图下对类内目标工具的抓取姿态生成,为工具的后续使用操作打好基础。通过基于意图的抓取姿态生成与知识迁移相结合的方法,使得在有限数据训练得到的基于意图的抓取姿态生成网络,可以对类内目标工具生成更好的抓取姿态,相较于原网络针对实验中的类内目标工具在穿透体积上平均降低0.917 cm3,仿真位移平均降低5.25 mm,手部指间自碰撞概率平均降低49.25%。

关键词: 五指灵巧手, 抓取姿态生成, 知识迁移, 手部指间自碰撞, 抓取姿态映射

Abstract:

Grasp pose generation for a five-finger dexterous hand plays a critical role in dexterous hand grasping tasks. Firstly, an intention-based grasp pose generation network was constructed, addressing variations in human hand grasping poses under different tool usage intentions, emphasizing the functionality of grasps under different intentions. Secondly, to tackle the issue that the a grasp pose generation network trained with limited data cannot adapt to all intra-class tools, a knowledge transfer-based grasp pose generation method was proposed. This method improved knowledge transfer to adapt to various poses of intra-class target tools for functional grasp while optimizing the inter-finger self-collision issue. Finally, in constructing the mapping relationship between the human hand and five-finger dexterous hand grasp poses, key point correspondence-based mapping rules were optimized. This enabled the generation of five-finger dexterous hand grasp poses under different intentions, laying a foundation for subsequent tool use operations. By combining intention-based grasp pose generation with knowledge transfer, the intention-based grasp pose generation network trained with limited data can generate better grasp poses for intra-class target tools. Compared to the original network, the proposed method reduced the penetration volume by an average of 0.917 cm3, the simulation displacement by an average of 5.25 mm, and the inter-finger self-collision probability by an average of 49.25%.

Key words: five-finger dexterous hand, grasp pose generation, knowledge transfer, inter-finger self-collision, grasp mapping

中图分类号: