[1] |
陈少磊, 罗洋, 邓平, 等. ADSS光缆电腐蚀机理研究及防范措施应用[J]. 电力信息与通信技术, 2019, 17(9): 67-73.
|
|
CHEN S L, LUO Y, DENG P, et al. Research on electro-corrosion mechanism of ADSs optical cable and application of preventive measures[J]. Electric Power Information and Communication Technology, 2019, 17(9): 67-73 (in Chinese).
|
[2] |
王富. ADSS光缆电腐蚀故障的在线监测措施[J]. 电子世界, 2018(14): 171, 173.
|
|
WANG F. Online monitoring measures for galvanic corrosion faults in ADSS fiber optic cables[J]. Electronics World, 2018(14): 171, 173 (in Chinese).
|
[3] |
刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43(19): 7423-7445.
|
|
LIU C Y, WU Y Q. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43(19): 7423-7445 (in Chinese).
|
[4] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587.
|
[5] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
[6] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788.
|
[7] |
裴少通, 张行远, 胡晨龙, 等. 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39(9): 2825-2840.
|
|
PEI S T, ZHANG H X, HU C L, et al. The defect detection method for cross-environment power transmission line based on ER-YOLO algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2825-2840 (in Chinese).
|
[8] |
王道累, 康博, 朱瑞. 基于深度学习的电力设备铭牌文本检测方法[J]. 图学学报, 2023, 44(4): 691-698.
DOI
|
|
WANG D L, KANG B, ZHU R. Text detection method for electrical equipment nameplates based on deep learning[J]. Journal of Graphics, 2023, 44(4): 691-698 (in Chinese).
|
[9] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1571-1580.
|
[10] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768.
|
[11] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944.
|
[12] |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9:learning what you want to learn using programmable gradient information[EB/OL]. [2024-06-13]. https://arxiv.org/abs/2402.13616.
|
[13] |
CAI X H, LAI Q X, WANG Y W, et al. Poly kernel inception network for remote sensing detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 27706-27716.
|
[14] |
QI Y L, HE Y T, QI X M, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 6047-6056.
|
[15] |
ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 16965-16974.
|
[16] |
曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44(2): 335-345.
DOI
|
|
CAO Y Q, WU M L, XU L. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345 (in Chinese).
|
[17] |
WANG A, CHEN H, LIU L H, et al. YOLOv10:Real-time end-to-end object detection[EB/OL]. [2024-06-13]. https://arxiv.org/abs/2405.14458.
|