Journal of Graphics ›› 2023, Vol. 44 ›› Issue (3): 456-464.DOI: 10.11996/JG.j.2095-302X.2023030456
Previous Articles Next Articles
HAO Peng-fei(), LIU Li-qun(
), GU Ren-yuan
Received:
2022-10-25
Accepted:
2023-01-15
Online:
2023-06-30
Published:
2023-06-30
Contact:
LIU Li-qun (1982-), associate professor, master. Her main research interests cover intelligent computing and deep learning, etc. E-mail:llqhjy@126.com
About author:
HAO Peng-fei (1998-), master student. His main research interests cover deep learning and image processing. E-mail:hola_Cc@163.com
Supported by:
CLC Number:
HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model[J]. Journal of Graphics, 2023, 44(3): 456-464.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023030456
网络层 | MobileNetV2 | MobileNetV2-Lite | ||||||
---|---|---|---|---|---|---|---|---|
t | c | n | s | t | c | n | s | |
Conv2d | - | 32 | 1 | 2 | - | 32 | 1 | 2 |
Bottleneck1 | 1 | 16 | 1 | 1 | 1 | 16 | 1 | 1 |
Bottleneck2 | 6 | 24 | 2 | 2 | 6 | 24 | 1 | 2 |
Bottleneck3 | 6 | 32 | 3 | 2 | 6 | 32 | 1 | 2 |
Bottleneck4 | 6 | 64 | 4 | 2 | 6 | 64 | 1 | 2 |
Bottleneck5 | 6 | 96 | 3 | 1 | 6 | 96 | 1 | 1 |
Bottleneck6 | 6 | 160 | 3 | 2 | 6 | 160 | 1 | 2 |
Bottleneck7 | 6 | 320 | 1 | 1 | 6 | 320 | 1 | 1 |
Table 1 The backbone network detail parameters of the model proposed in this paper
网络层 | MobileNetV2 | MobileNetV2-Lite | ||||||
---|---|---|---|---|---|---|---|---|
t | c | n | s | t | c | n | s | |
Conv2d | - | 32 | 1 | 2 | - | 32 | 1 | 2 |
Bottleneck1 | 1 | 16 | 1 | 1 | 1 | 16 | 1 | 1 |
Bottleneck2 | 6 | 24 | 2 | 2 | 6 | 24 | 1 | 2 |
Bottleneck3 | 6 | 32 | 3 | 2 | 6 | 32 | 1 | 2 |
Bottleneck4 | 6 | 64 | 4 | 2 | 6 | 64 | 1 | 2 |
Bottleneck5 | 6 | 96 | 3 | 1 | 6 | 96 | 1 | 1 |
Bottleneck6 | 6 | 160 | 3 | 2 | 6 | 160 | 1 | 2 |
Bottleneck7 | 6 | 320 | 1 | 1 | 6 | 320 | 1 | 1 |
Model | Precision | Recall | F1 | AP |
---|---|---|---|---|
Stacked convolutional layer structure | 94.4 | 85.1 | 89.5 | 92.2 |
SE-DWCSP3 block | 96.2 | 86.8 | 91.2 | 93.1 |
Table 2 Detection results of models under NMS and Soft-NMS (%)
Model | Precision | Recall | F1 | AP |
---|---|---|---|---|
Stacked convolutional layer structure | 94.4 | 85.1 | 89.5 | 92.2 |
SE-DWCSP3 block | 96.2 | 86.8 | 91.2 | 93.1 |
Model | Precision | Recall | F1 | AP |
---|---|---|---|---|
YOLO-R-Apple NMS | 94.5 | 87.1 | 90.7 | 91.2 |
YOLO-R-Apple Soft-NMS | 92.0 | 89.3 | 90.6 | 92.3 |
YOLO-RD-Apple NMS | 96.1 | 85.0 | 90.2 | 92.8 |
YOLO-RD-Apple Soft-NMS | 96.2 | 86.8 | 91.2 | 93.1 |
Table 3 Detection results of models under NMS and Soft- NMS (%)
Model | Precision | Recall | F1 | AP |
---|---|---|---|---|
YOLO-R-Apple NMS | 94.5 | 87.1 | 90.7 | 91.2 |
YOLO-R-Apple Soft-NMS | 92.0 | 89.3 | 90.6 | 92.3 |
YOLO-RD-Apple NMS | 96.1 | 85.0 | 90.2 | 92.8 |
YOLO-RD-Apple Soft-NMS | 96.2 | 86.8 | 91.2 | 93.1 |
Fig. 4 Detection effect of the model under natural light and back light conditions ((a) Original images; (b) YOLO-R-Apple natural light; (c) YOLO-R-Apple back light; (d) YOLO-RD-Apple natural light; (e) YOLO-RD-Apple back light)
Model | Natural light | Back light | ||||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | AP | Precision | Recall | F1 | AP | |
YOLO-R-Apple | 92.4 | 88.9 | 90.6 | 92.5 | 91.6 | 87.3 | 89.4 | 90.4 |
YOLO-RD-Apple | 96.8 | 88.4 | 92.4 | 92.9 | 94.2 | 87.8 | 90.9 | 91.7 |
Table 4 Detection results of models under natural light and back light conditions (%)
Model | Natural light | Back light | ||||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | AP | Precision | Recall | F1 | AP | |
YOLO-R-Apple | 92.4 | 88.9 | 90.6 | 92.5 | 91.6 | 87.3 | 89.4 | 90.4 |
YOLO-RD-Apple | 96.8 | 88.4 | 92.4 | 92.9 | 94.2 | 87.8 | 90.9 | 91.7 |
Model | Precision (%) | Recall (%) | F1 (%) | AP (%) | Param (M) | GFLOPs (G) | FPS |
---|---|---|---|---|---|---|---|
YOLOv3 | 94.7 | 87.1 | 90.8 | 91.8 | 61.524 | 99.249 | 45.676 |
YOLOv4 | 91.8 | 90.0 | 90.9 | 91.7 | 63.938 | 90.816 | 36.018 |
YOLOv5-s-v6.1 | 95.0 | 87.4 | 91.0 | 93.6 | 7.022 | 10.205 | 54.645 |
YOLOv4-Tiny | 93.1 | 85.3 | 89.0 | 91.9 | 5.874 | 10.352 | 154.357 |
Faster RCNN ResNet-50 | 57.0 | 92.7 | 70.6 | 92.0 | 28.275 | 924.058 | 17.599 |
YOLO-R-Apple | 92.0 | 89.3 | 90.6 | 92.3 | 18.939 | 33.564 | 55.158 |
YOLO-RD-Apple | 96.2 | 86.8 | 91.2 | 93.1 | 19.133 | 34.116 | 40.496 |
Table 5 Results of the 7 models on the test set
Model | Precision (%) | Recall (%) | F1 (%) | AP (%) | Param (M) | GFLOPs (G) | FPS |
---|---|---|---|---|---|---|---|
YOLOv3 | 94.7 | 87.1 | 90.8 | 91.8 | 61.524 | 99.249 | 45.676 |
YOLOv4 | 91.8 | 90.0 | 90.9 | 91.7 | 63.938 | 90.816 | 36.018 |
YOLOv5-s-v6.1 | 95.0 | 87.4 | 91.0 | 93.6 | 7.022 | 10.205 | 54.645 |
YOLOv4-Tiny | 93.1 | 85.3 | 89.0 | 91.9 | 5.874 | 10.352 | 154.357 |
Faster RCNN ResNet-50 | 57.0 | 92.7 | 70.6 | 92.0 | 28.275 | 924.058 | 17.599 |
YOLO-R-Apple | 92.0 | 89.3 | 90.6 | 92.3 | 18.939 | 33.564 | 55.158 |
YOLO-RD-Apple | 96.2 | 86.8 | 91.2 | 93.1 | 19.133 | 34.116 | 40.496 |
[1] |
田娜, 杨晓文, 单东林, 等. 我国数字农业现状与展望[J]. 中国农机化学报, 2019, 40(4): 210-213.
DOI |
TIAN N, YANG X W, SHAN D L, et al. Status and prospect of digital agriculture in China[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 210-213. (in Chinese) | |
[2] |
JIA W K, TIAN Y Y, LUO R, et al. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot[J]. Computers and Electronics in Agriculture, 2020, 172: 105380.
DOI URL |
[3] | 刘晓洋, 赵德安, 贾伟宽, 等. 基于超像素特征的苹果采摘机器人果实分割方法[J]. 农业机械学报, 2019, 50(11): 15-23. |
LIU X Y, ZHAO D A, JIA W K, et al. Fruits segmentation method based on superpixel features for apple harvesting robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 15-23. (in Chinese) | |
[4] |
KANG H W, CHEN C. Fruit detection and segmentation for apple harvesting using visual sensor in orchards[J]. Sensors, 2019, 19(20): 4599.
DOI URL |
[5] | 王丹丹, 宋怀波, 何东健. 苹果采摘机器人视觉系统研究进展[J]. 农业工程学报, 2017, 33(10): 59-69. |
WANG D D, SONG H B, HE D J. Research advance on vision system of apple picking robot[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 59-69. (in Chinese) | |
[6] |
FOIX S, ALENYA G, TORRAS C. Lock-in time-of-flight (ToF) cameras: a survey[J]. IEEE Sensors Journal, 2011, 11(9): 1917-1926.
DOI URL |
[7] |
ARAD B, BALENDONCK J, BARTH R, et al. Development of a sweet pepper harvesting robot[J]. Journal of Field Robotics, 2020, 37(6): 1027-1039.
DOI URL |
[8] |
MILELLA A, MARANI R, PETITTI A, et al. In-field high throughput grapevine phenotyping with a consumer-grade depth camera[J]. Computers and Electronics in Agriculture, 2019, 156: 293-306.
DOI URL |
[9] |
GENÉ-MOLA J, VILAPLANA V, ROSELL-POLO J R, et al. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities[J]. Computers and Electronics in Agriculture, 2019, 162: 689-698.
DOI URL |
[10] |
TU S Q, XUE Y J, ZHENG C, et al. Detection of passion fruits and maturity classification using Red-Green-Blue Depth images[J]. Biosystems Engineering, 2018, 175: 156-167.
DOI URL |
[11] |
TU S Q, PANG J, LIU H F, et al. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images[J]. Precision Agriculture, 2020, 21(5): 1072-1091.
DOI |
[12] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[13] | WANG C Y, LIAO H M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1571-1580. |
[14] | FERRER M, RUIZ-HIDALGO J, GREGORIO E, et al. Simultaneous fruit detection and size estimation using multitask deep neural networks[EB/OL]. [2022-08-14]. https://www.grap.udl.cat/en/publications/papple_rgb-d-size-dataset. |
[15] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[16] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[17] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807. |
[18] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[19] | JOCHER G. Add SPPF() layer[EB/OL]. (2021-08-15) [2022-08-14]. https://github.com/ultralytics/yolov5/pull/4420. |
[20] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI PMID |
[1] |
LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan.
Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
[J]. Journal of Graphics, 2023, 44(4): 658-666.
|
[2] |
LI Xin , PU Yuan-yuan, ZHAO Zheng-peng , XU Dan , QIAN Wen-hua.
Content semantics and style features match consistent
artistic style transfer
[J]. Journal of Graphics, 2023, 44(4): 699-709.
|
[3] |
YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping.
Monocular depth estimation based on Laplacian
pyramid with attention fusion
[J]. Journal of Graphics, 2023, 44(4): 728-738.
|
[4] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[5] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[6] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[7] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. |
[8] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. |
[9] | XIE Guo-bo, HE Di-xuan, HE Yu-qin, LIN Zhi-yi. P-CenterNet for chimney detection in optical remote-sensing images [J]. Journal of Graphics, 2023, 44(2): 233-249. |
[10] |
ZENG Lun-jie , CHU Jun, CHEN Zhao-jun.
Object detection in remote sensing image based on
two-stage anchor and class balanced loss
[J]. Journal of Graphics, 2023, 44(2): 249-259.
|
[11] | XIONG Ju-ju , XU Yang, FAN Run-ze , SUN Shao-cong. Flowers recognition based on lightweight visual transformer [J]. Journal of Graphics, 2023, 44(2): 271-279. |
[12] | CHENG Lang , JING Chao. X-ray image rotating object detection based on improved YOLOv7 [J]. Journal of Graphics, 2023, 44(2): 324-334. |
[13] | CAO Yi-qin , WU Ming-lin , XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. |
[14] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui . Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. |
[15] | LI Xiao-bo , LI Yang-gui, GUO Ning , FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||