Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 368-379.DOI: 10.11996/JG.j.2095-302X.2023020368
• BIM/CIM • Previous Articles Next Articles
ZHANG Ji-song1(), YU Ze-han1, LI Hai-jiang2
Received:
2022-06-17
Accepted:
2022-09-20
Online:
2023-04-30
Published:
2023-05-01
About author:
ZHANG Ji-song (1983-), lecturer, Ph.D. His main research interest covers BIM. E-mail:13516000013@163.com
Supported by:
CLC Number:
ZHANG Ji-song, YU Ze-han, LI Hai-jiang. Compliance checking approach for BIM structural model under semantic web[J]. Journal of Graphics, 2023, 44(2): 368-379.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020368
名称 | 国家 | 简介 |
---|---|---|
Solibri Model Checker (SMC)[ | 芬兰 | 基于Java的BIM软件应用平台,能够检查施工之前和之中的设计问题。可以自动查看检查问题及输出报告,包括PDF和XML以及可视化等方式,检查的对象是以IFC形式表达的模型 |
CORENET e-PlanCheck[ | 新加坡 | 使用了挪威的EDM模型服务器,目前已经实现了在建筑规划和建筑服务2大类的诸多规范检查,自动化程度高、扩展方便 |
Jotne EDModelChecker (EDM)[ | 挪威 | 提供对象数据库,并支持开源的EXPRESS语言的规范检查开发和复杂扩展,能一次对大型建筑项目或多个主题实现检查 |
SMARTcodes[ | 美国 | 国际规范委员会(International Code Council,ICC)开发的SMARTcodes规则检查平台,目前主要用于住宅和商业相关建筑的规范检查,SMARTcodes builders可以通过事先建立的包含领域概念的领域词典来快速翻译自然语言表达的规则 |
广联达BIM审图软件[ | 中国 | 广联达BIM审图软件能进行针对三维建筑信息模型的空间碰撞、门窗开启、楼梯净高、管线冲突等检查,能支持Revit,Tekla和Magicad等主流BIM软件的格式 |
广州市施工图设计 文件审查管理系统 | 中国 | 该系统是一个人工智能审查平台,通过插件将各类BIM软件所建模型导出为统一格式的标准数据库,可实现对建筑、结构、水、暖、电、人防、消防及节能等专业的智能审查 |
Table 1 Domestic and foreign BIM compliance checking system
名称 | 国家 | 简介 |
---|---|---|
Solibri Model Checker (SMC)[ | 芬兰 | 基于Java的BIM软件应用平台,能够检查施工之前和之中的设计问题。可以自动查看检查问题及输出报告,包括PDF和XML以及可视化等方式,检查的对象是以IFC形式表达的模型 |
CORENET e-PlanCheck[ | 新加坡 | 使用了挪威的EDM模型服务器,目前已经实现了在建筑规划和建筑服务2大类的诸多规范检查,自动化程度高、扩展方便 |
Jotne EDModelChecker (EDM)[ | 挪威 | 提供对象数据库,并支持开源的EXPRESS语言的规范检查开发和复杂扩展,能一次对大型建筑项目或多个主题实现检查 |
SMARTcodes[ | 美国 | 国际规范委员会(International Code Council,ICC)开发的SMARTcodes规则检查平台,目前主要用于住宅和商业相关建筑的规范检查,SMARTcodes builders可以通过事先建立的包含领域概念的领域词典来快速翻译自然语言表达的规则 |
广联达BIM审图软件[ | 中国 | 广联达BIM审图软件能进行针对三维建筑信息模型的空间碰撞、门窗开启、楼梯净高、管线冲突等检查,能支持Revit,Tekla和Magicad等主流BIM软件的格式 |
广州市施工图设计 文件审查管理系统 | 中国 | 该系统是一个人工智能审查平台,通过插件将各类BIM软件所建模型导出为统一格式的标准数据库,可实现对建筑、结构、水、暖、电、人防、消防及节能等专业的智能审查 |
条款 | 条款原文 | 转译后 | 所用谓词和对应描述 |
---|---|---|---|
11.3.5 | (1) 梁截面宽度不宜 小于200 mm | ∀x(BeamB(x)→More(x,200)) | BeamB(x):x是框架梁截面宽度 BeamH(y):y是框架梁截面高度 BeamL(z):z是框架梁净跨 More(x,y):x大于y Less(x,y):x小于y Divide(x,y,z):x是y除以z的算术商 |
(2) 梁截面高度与宽度 比不宜大于4 | ∀x∀y(BeamB(x)^BeamH(y)^ Divide(z,y,x)→Less(z,4)) | ||
(3) 梁净跨与截面高度 比不宜小于4 | ∀z∀y(BeamL(z)^BeamH(y)^ Divide(x,z,y))→More(x,4) | ||
11.4.6-1 | (1) 考虑地震组合的矩形 截面且剪跨比λ大于2框 架柱,其受剪截面剪力 | ∀x1∀x2(Column(x1)^ColumnSection(y1)^ Equal(y1,Rectangle)^ColumnShearSpanRate(y2)^ More(y2,2)^ColumnVc(x2)^ ColumnRre(z1)^ConcreteBc(z2)^ ConcreteFc(z3)^ColumnB(z4)^ ColumnH0(z5)^Multiply(z6,0.2,z2,z3,z4,z5)^ Divide(z7,z6,z1)→Less(x2,z7)) | Column(x):x是框架柱 ColumnSection(y):y是截面形状 ColumnShearSpanRate(y): y是剪跨比ColumnVc(x): x是受剪截面剪力设计值 ColumnRre(z):z是承载力抗震调整系数 ConcreteBc(z):z是砼强度影响系数 ConcreteFc(z):z是砼抗压强度设计值 ColumnB(y):y是框架柱截面宽度 ColumnH0(y):y是框架柱截面有效高度 Equal(x,y):x等于y More(x,y):x大于y Less(x,y):x小于y Multiply(a,b,c,d,e,f,g): a是b,c,d,e,f,g的算术积 Divide(x,y,z):x是y除以z的算术商 |
(2) 剪跨比λ小于2时, 其受截面剪力 | ∀x1∀x2(Column(x1)^ColumnSection(y1)^ Equal(y1,Rectangle)^ ColumnShearSpanRate(y2)^ Less(y2,2)^ColumnVc(x2)^ ColumnRre(z1)^ConcreteBc(z2)^ ConcreteFc(z3)^ColumnB(z4)^ ColumnH0(z5)^Multiply (z6,0.15,z2,z3,z4,z5)^ Divide(z7,z6,z1)→Less(x2,z7)) | ||
11.4.16-1 | (1) 框架结构中一级抗震 等级框架柱轴压比不宜 大于0.65 | ∀x∀z2(Column(x)^SeismicGrade(1)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.65)) | Column(x):x是框架柱 SeismicGrade(x):抗震等级为x ColumnAxialLoad(y):y是轴压力 ConcreteFc(y):y是砼抗压强度设计值 ColumnB(y):y是框架柱截面宽度 ColumnH(y):y是框架柱截面高度 Less(x,y):x小于y Multiply(a,b,c,d): a是b,c,d的算术积 Divide(x,y,z): x是y除以z的算术商 |
(2) 框架结构中二级抗震 等级框架柱轴压比不宜 大于0.75 | ∀x∀z2(Column(x)^SeismicGrade(2)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.75)) | ||
(3) 框架结构中三级抗震 等级框架柱轴压比 不宜大于0.85 | ∀x∀z2(Column(x)^SeismicGrade(3)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.85)) | ||
(4) 框架结构中四级抗震 等级的框架柱轴压比 不宜大于0.90 | ∀x∀z2(Column(x)^SeismicGrade(4)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.9)) |
Table 2 Translation results
条款 | 条款原文 | 转译后 | 所用谓词和对应描述 |
---|---|---|---|
11.3.5 | (1) 梁截面宽度不宜 小于200 mm | ∀x(BeamB(x)→More(x,200)) | BeamB(x):x是框架梁截面宽度 BeamH(y):y是框架梁截面高度 BeamL(z):z是框架梁净跨 More(x,y):x大于y Less(x,y):x小于y Divide(x,y,z):x是y除以z的算术商 |
(2) 梁截面高度与宽度 比不宜大于4 | ∀x∀y(BeamB(x)^BeamH(y)^ Divide(z,y,x)→Less(z,4)) | ||
(3) 梁净跨与截面高度 比不宜小于4 | ∀z∀y(BeamL(z)^BeamH(y)^ Divide(x,z,y))→More(x,4) | ||
11.4.6-1 | (1) 考虑地震组合的矩形 截面且剪跨比λ大于2框 架柱,其受剪截面剪力 | ∀x1∀x2(Column(x1)^ColumnSection(y1)^ Equal(y1,Rectangle)^ColumnShearSpanRate(y2)^ More(y2,2)^ColumnVc(x2)^ ColumnRre(z1)^ConcreteBc(z2)^ ConcreteFc(z3)^ColumnB(z4)^ ColumnH0(z5)^Multiply(z6,0.2,z2,z3,z4,z5)^ Divide(z7,z6,z1)→Less(x2,z7)) | Column(x):x是框架柱 ColumnSection(y):y是截面形状 ColumnShearSpanRate(y): y是剪跨比ColumnVc(x): x是受剪截面剪力设计值 ColumnRre(z):z是承载力抗震调整系数 ConcreteBc(z):z是砼强度影响系数 ConcreteFc(z):z是砼抗压强度设计值 ColumnB(y):y是框架柱截面宽度 ColumnH0(y):y是框架柱截面有效高度 Equal(x,y):x等于y More(x,y):x大于y Less(x,y):x小于y Multiply(a,b,c,d,e,f,g): a是b,c,d,e,f,g的算术积 Divide(x,y,z):x是y除以z的算术商 |
(2) 剪跨比λ小于2时, 其受截面剪力 | ∀x1∀x2(Column(x1)^ColumnSection(y1)^ Equal(y1,Rectangle)^ ColumnShearSpanRate(y2)^ Less(y2,2)^ColumnVc(x2)^ ColumnRre(z1)^ConcreteBc(z2)^ ConcreteFc(z3)^ColumnB(z4)^ ColumnH0(z5)^Multiply (z6,0.15,z2,z3,z4,z5)^ Divide(z7,z6,z1)→Less(x2,z7)) | ||
11.4.16-1 | (1) 框架结构中一级抗震 等级框架柱轴压比不宜 大于0.65 | ∀x∀z2(Column(x)^SeismicGrade(1)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.65)) | Column(x):x是框架柱 SeismicGrade(x):抗震等级为x ColumnAxialLoad(y):y是轴压力 ConcreteFc(y):y是砼抗压强度设计值 ColumnB(y):y是框架柱截面宽度 ColumnH(y):y是框架柱截面高度 Less(x,y):x小于y Multiply(a,b,c,d): a是b,c,d的算术积 Divide(x,y,z): x是y除以z的算术商 |
(2) 框架结构中二级抗震 等级框架柱轴压比不宜 大于0.75 | ∀x∀z2(Column(x)^SeismicGrade(2)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.75)) | ||
(3) 框架结构中三级抗震 等级框架柱轴压比 不宜大于0.85 | ∀x∀z2(Column(x)^SeismicGrade(3)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.85)) | ||
(4) 框架结构中四级抗震 等级的框架柱轴压比 不宜大于0.90 | ∀x∀z2(Column(x)^SeismicGrade(4)^ ColumnAxialLoad(y1)^ConcreteFc(y2)^ ColumnB(y3)^ColumnH(y4)^Multiply (z1,y2,y3,y4)^Divide(z2,y1,z1)→Less(z2,0.9)) |
编号 | 具体设计缺陷 | |
---|---|---|
KL1 | 1 | 受剪截面剪力1 500(700) |
2 | 受拉钢筋配筋率0.4(0.25) | |
3 | 箍筋边缘距100(40) | |
KL8 | 4 | 混凝土受压区高度200(120) |
5 | 截面宽度100(200) | |
6 | 截面高宽比5(4) | |
7 | 截面跨高比3(4) | |
KL12 | 8 | 截面宽度180(200) |
9 | 截面高宽比4.1(4.0) | |
10 | 箍筋加密区长度500(900) | |
KZ1 | 11 | 柱上端弯矩弯矩550(500) |
12 | 柱受剪截面剪力950(650) | |
KZ5 | 13 | 柱剪力设计值658(800) |
14 | 剪跨比1(2) | |
KZ7 | 15 | 箍筋加密区肢距350(250) |
16 | 轴压比0.9(0.75) |
Table 3 Predefined 16 unconformity of model
编号 | 具体设计缺陷 | |
---|---|---|
KL1 | 1 | 受剪截面剪力1 500(700) |
2 | 受拉钢筋配筋率0.4(0.25) | |
3 | 箍筋边缘距100(40) | |
KL8 | 4 | 混凝土受压区高度200(120) |
5 | 截面宽度100(200) | |
6 | 截面高宽比5(4) | |
7 | 截面跨高比3(4) | |
KL12 | 8 | 截面宽度180(200) |
9 | 截面高宽比4.1(4.0) | |
10 | 箍筋加密区长度500(900) | |
KZ1 | 11 | 柱上端弯矩弯矩550(500) |
12 | 柱受剪截面剪力950(650) | |
KZ5 | 13 | 柱剪力设计值658(800) |
14 | 剪跨比1(2) | |
KZ7 | 15 | 箍筋加密区肢距350(250) |
16 | 轴压比0.9(0.75) |
编号 | 设计条款 | 不合规处 |
---|---|---|
KL1 | 11.3.3 | 受剪截面剪力过大 |
11.3.6-1 | 梁端受拉钢筋配筋率过低 | |
11.3.9-1 | 梁端箍筋边缘距过大 | |
KL8 | 11.3.1 | 梁端混凝土受压区高度过大 |
11.3.5-1 | 截面宽度过小 | |
11.3.5-2 | 截面高宽比过大 | |
11.3.5-3 | 截面跨高比过小 | |
KL12 | 11.3.5-1 | 截面宽度过小 |
11.3.5-2 | 截面高宽比过大 | |
11.3.6-3.1 | 梁端箍筋加密区长度过小 | |
KZ1 | 11.4.1 | 柱上端截面弯矩设计值过大 |
11.4.6 | 受剪截面剪力过大 | |
KZ5 | 11.4.3-1 | 剪力设计值不合规 |
11.4.11-2 | 剪跨比过小 | |
KZ7 | 11.4.15 | 箍筋加密区肢距过大 |
11.4.16 | 轴压比过大 |
Table 4 Compliance checking results
编号 | 设计条款 | 不合规处 |
---|---|---|
KL1 | 11.3.3 | 受剪截面剪力过大 |
11.3.6-1 | 梁端受拉钢筋配筋率过低 | |
11.3.9-1 | 梁端箍筋边缘距过大 | |
KL8 | 11.3.1 | 梁端混凝土受压区高度过大 |
11.3.5-1 | 截面宽度过小 | |
11.3.5-2 | 截面高宽比过大 | |
11.3.5-3 | 截面跨高比过小 | |
KL12 | 11.3.5-1 | 截面宽度过小 |
11.3.5-2 | 截面高宽比过大 | |
11.3.6-3.1 | 梁端箍筋加密区长度过小 | |
KZ1 | 11.4.1 | 柱上端截面弯矩设计值过大 |
11.4.6 | 受剪截面剪力过大 | |
KZ5 | 11.4.3-1 | 剪力设计值不合规 |
11.4.11-2 | 剪跨比过小 | |
KZ7 | 11.4.15 | 箍筋加密区肢距过大 |
11.4.16 | 轴压比过大 |
[1] | 蔡亮, 张文玉, 孟岚. 德国建设工程设计审查监管情况介绍与启示[J]. 建设监理, 2017(9): 62-65. |
CAI L, ZHANG W Y, MENG L. Introduction and enlightenment of supervision of construction engineering design review in Germany[J]. Project Management, 2017(9): 62-65. (in Chinese) | |
[2] | 王亚楠, 彭亚萍, 赵劲松. 基于AutoCAD的二次开发实现框架结构数字化审核[J]. 工业建筑, 2018, 48: 119-128. |
WANG Y N, PENG Y P, ZHAO J S. Realization of digital audit of frame structure based on secondary development of Autocad[J]. Industrial Construction, 2018, 48: 119-128. (in Chinese) | |
[3] | 龙资. 框架结构施工图审查过程数字化的研究[D]. 武汉: 武汉理工大学, 2014. |
LONG Z. The procedural digital research for construction drawing review of frame structure[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese) | |
[4] | 褚江. 剪力墙及框架—剪力墙结构施工图审查过程数字化的研究[D]. 武汉: 武汉理工大学, 2014. |
CHU J. The research of construction drawing review digitization about shearwall structure and frame-shearwall structure[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese) | |
[5] | 姜柳, 史健勇, 付功义, 等. 基于BIM和深度学习的建筑平面凹凸不规则识别[J]. 图学学报, 2022, 43(3): 522-529. |
JIANG L, SHI J Y, FU G Y, et al. Identification of the plane irregularity of structures based on BIM and deep learning[J]. Journal of Graphics, 2022, 43(3): 522-529. (in Chinese) | |
[6] | 孙澄宇, 柯勋. 建筑设计中BIM模型的自动规范检查方法研究[J]. 建筑科学, 2016, 32(4): 140-145. |
SUN C Y, KE X. Method of automatic design code checking for BIM models[J]. Building Science, 2016, 32(4): 140-145. (in Chinese) | |
[7] | 张吉松, 赵丽华, 崔英辉, 等. 基于BIM模型的结构设计审查方法研究[J]. 图学学报, 2021, 42(1): 133-140. |
ZHANG J S, ZHAO L H, CUI Y H, et al. Code compliance checking of structural design based on BIM model[J]. Journal of Graphics, 2021, 42(1): 133-140. (in Chinese) | |
[8] | 张荷花, 顾明. BIM模型智能检查工具研究与应用[J]. 土木建筑工程信息技术, 2018, 10(2): 1-6. |
ZHANG H H, GU M. Research and application of intelligent BIM model checking tools[J]. Journal of Information Technology in Civil Engineering and Architecture, 2018, 10(2): 1-6. (in Chinese) | |
[9] | 张笑彦. 计算式BIM技术在建筑设计合规性审查中的应用研究[D]. 青岛: 青岛理工大学, 2021. |
ZHANG X Y. Research on the application of computational BIM technology in the compliance checking for architectural design[D]. Qingdao: Qingdao Technology University, 2021. (in Chinese) | |
[10] | 刘洪. 基于BIM的结构设计规范审查方法研究[D]. 重庆: 重庆大学, 2017. |
LIU H. Research on BIM-based examination method of code for structural design[D]. Chongqing: Chongqing University, 2017. (in Chinese) | |
[11] |
CHOI J, CHOI J, KIM I. Development of BIM-based evacuation regulation checking system for high-rise and complex buildings[J]. Automation in Construction, 2014, 46: 38-49.
DOI URL |
[12] |
ZHONG B T, DING L Y, LUO H B, et al. Ontology-based semantic modeling of regulation constraint for automated construction quality compliance checking[J]. Automation in Construction, 2012, 28: 58-70.
DOI URL |
[13] |
ZHANG S J, TEIZER J, LEE J K, et al. Building information modeling and safety: automatic safety checking of construction models and schedules[J]. Automation in Construction, 2013, 29: 183-195.
DOI URL |
[14] |
TAN X Y, HAMMAD A, FAZIO P. Automated code compliance checking for building envelope design[J]. Journal of Computing in Civil Engineering, 2010, 24(2): 203-211.
DOI URL |
[15] |
HÄUßLER M, ESSER S, BORRMANN A. Code compliance checking of railway designs by integrating BIM, BPMN and DMN[J]. Automation in Construction, 2021, 121: 103427.
DOI URL |
[16] |
XU X, CAI H B. Semantic approach to compliance checking of underground utilities[J]. Automation in Construction, 2020, 109: 103006.
DOI URL |
[17] | 高歌, 张越美, 刘寒, 等. 基于知识库的IFC模型检查方法研究[J]. 图学学报, 2019, 40(6): 1099-1108. |
GAO G, ZHANG Y M, LIU H, et al. Research on IFC model checking method based on knowledge base[J]. Journal of Graphics, 2019, 40(6): 1099-1108. (in Chinese) | |
[18] | 刘毅, 吴浪韬, 梁雄, 等. 知识图谱在BIM模型审查中的应用研究[C]// 第六届全国BIM学术会议论文集. 北京: 中国建筑工业出版社, 2020: 122-126. |
LIU Y, WU L T, LIANG X, et al. Research on application of knowledge graph in BIM model review[C]// The 6th National BIM Conference. Beijing: China Architecture & Building Press, 2020: 122-126. (in Chinese) | |
[19] | 周俊羽, 向星磊, 马智亮. 基于知识图谱的BIM机电模型构件拓扑关系自动检查方法[C]// 第七届全国BIM学术会议论文集. 北京: 中国建筑工业出版社, 2021: 479-483. |
ZHOU J Y, XIANG X L, MA Z L. Automatic checking method of component topological relationship of BIM electromechanical model based on knowledge graph[C]// The 7th National BIM Conference. Beijing: China Architecture & Building Press, 2021: 479-483. (in Chinese) | |
[20] | 郑哲, 周育丞, 林佳瑞, 等. 基于知识图谱的性能化消防设计审查方法[C]// 第七届全国BIM学术会议论文集. 北京: 中国建筑工业出版社, 2021: 474-478. |
ZHENG Z, ZHOU Y C, LIN J R, et al. Performance based fire protection design review method based on knowledge graph[C]// The 7th National BIM Conference. Beijing: China Architecture & Building Press, 2021: 474-478. (in Chinese) | |
[21] | 吴浪韬, 冷烁, 梁雄, 等. 建筑机电设备知识图谱的构建和应用[C]// 第七届全国BIM学术会议论文集. 北京: 中国建筑工业出版社, 2021: 489-496. |
WU L T, LENG S, LIANG X, et al. Construction and application of knowledge graph of building electromechanical equipment[C]// The 7th National BIM Conference. Beijing: China Architecture & Building Press, 2021: 474-478. (in Chinese) | |
[22] | 姜韶华, 周涵. 支持建设行业合规性检查的语义方法[J]. 土木工程与管理学报, 2017, 34(5): 60-65, 89. |
JIANG S H, ZHOU H. Semantic-based approach for compliance checking of construction industry[J]. Journal of Civil Engineering and Management, 2017, 34(5): 60-65, 89. (in Chinese) | |
[23] | 林佳瑞, 郭建锋. 基于BIM的合规性自动审查[J]. 清华大学学报: 自然科学版, 2020, 60(10): 873-879. |
LIN J R, GUO J F. BIM-based automatic compliance checking[J]. Journal of Tsinghua University: Science and Technology, 2020, 60(10): 873-879. (in Chinese) | |
[24] |
ZHOU Y C, ZHENG Z, LIN J R, et al. Integrating NLP and context-free grammar for complex rule interpretation towards automated compliance checking[J]. Computers in Industry, 2022, 142: 103746.
DOI URL |
[25] |
ZHENG Z, ZHOU Y C, LU X Z, et al. Knowledge-informed semantic alignment and rule interpretation for automated compliance checking[J]. Automation in Construction, 2022, 142: 104524.
DOI URL |
[26] | JOAO S J, PATRICIA T, JULIANA P B, et al. Automated compliance checking in healthcare buildings design[J]. Automation in Construction. 2021(129): 103822. |
[27] |
ZHENG Z, LU X Z, CHEN K Y, et al. Pretrained domain-specific language model for natural language processing tasks in the AEC domain[J]. Computers in Industry, 2022, 142: 103733.
DOI URL |
[28] | SOLIBRI INC. Solibri model checker[EB/OL]. (2018-02-10) [2022-05-01]. http://www.solibri.com/. |
[29] | GREENWOOD D, LOCKLEY S, MALSANE S, et al. Automated compliance checking using building information models[C]// The Construction, Building and Real Estate Research Conference of the Royal Institution of Chartered Surveyors. Paris: RICS, 2010: 266-274. |
[30] |
MALSANE S, MATTHEWS J, LOCKLEY S, et al. Development of an object model for automated compliance checking[J]. Automation in Construction, 2015, 49: 51-58.
DOI URL |
[31] |
EASTMAN C, LEE J M, JEONG Y S, et al. Automatic rule-based checking of building designs[J]. Automation in Construction, 2009, 18(8): 1011-1033.
DOI URL |
[32] | 王诗旭. 基于BIM的规则检查技术辅助建筑设计方法研究: 以四川大学华西医技楼项目为例[D]. 重庆: 重庆大学, 2015. |
WANG S X. A study on the method of architecture design assited by rule checking technology based on BIM-practice and exploration on the Sichuan university, west China hospital medical technology building project[D]. Chongqing: Chongqing University, 2015. (in Chinese) | |
[33] |
ZHANG J S, EL-GOHARY N M. Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking[J]. Automation in Construction, 2017, 73: 45-57.
DOI URL |
[34] | BERNERS-LEE T, HENDLER J, LASSILA O. The semantic web[J]. Scientific American, 2001, 284(5): 34. |
[35] | PAUWELS P, ZHANG S J. Semantic rule-checking for regulation compliance checking: an overview of strategies and approaches[C]// The 32th International CIB W78 Conference. Eindhoven: CRC Press, 2015: 619-628. |
[36] | DEBORAH L M, FRANK V H. OWL web ontology language overview[EB/OL]. (2004-02-10) [2022-05-10]. https://static.twoday.net/71desa1bif/files/W3C-OWL-Overview.pdf. |
[37] | GOMEZ-PEREZ A, CORCHO O. Ontology languages for the semantic web[J]. IEEE Intelligent Systems, 2002, 17(1): 54-60. |
[38] |
PAUWELS P, ZHANG S J, LEE Y C. Semantic web technologies in AEC industry: a literature overview[J]. Automation in Construction, 2017, 73: 145-165.
DOI URL |
[39] |
YURCHYSHYNA A, ZARLI A. An ontology-based approach for formalisation and semantic organisation of conformance requirements in construction[J]. Automation in Construction, 2009, 18(8): 1084-1098.
DOI URL |
[40] |
PAUWELS P, VERSTRAETEN R, DE MEYER R, et al. Semantics-based design: can ontologies help in a preliminary design phase?[J]. Design Principles and Practices: an International Journal-Annual Review, 2009, 3(5): 263-276.
DOI URL |
[41] | PAUWELS P, PLANNING U, DE MEYER R, et al. Visualisation of semantic architectural information within a game engine environment[C]// The 10th International Conference on Construction Applications of Virtual Reality. Sendai: CONVR2010 Organizing Committee, 2010: 219-228. |
[42] |
PAUWELS P, VAN DEURSEN D, DE ROO J, et al. Three-dimensional information exchange over the semantic web for the domain of architecture, engineering, and construction[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2011, 25(4): 317-332.
DOI URL |
[43] |
REZGUI Y, BODDY S, WETHERILL M, et al. Past, present and future of information and knowledge sharing in the construction industry: towards semantic service-based e-construction?[J]. Computer-Aided Design, 2011, 43(5): 502-515.
DOI URL |
[44] | HJELSETH E, NISBET N. Exploring semantic based model checking[C]// The 27th CIB W78 International Conference. Cairo, Egypt:CIB W78, 2010: 54-64. |
[45] | HJELSETH E, NISBET N. Capturing normative constraints by use of the semantic mark-up RASE methodology[C]// The CIB W78-W102 Conference. Sophia Antipolis:CIB W78-W102, 2011: 1-10. |
[46] |
PAUWELS P, VAN DEURSEN D, VERSTRAETEN R, et al. A semantic rule checking environment for building performance checking[J]. Automation in Construction, 2011, 20(5): 506-518.
DOI URL |
[47] |
PAUWELS P, TERKAJ W. EXPRESS to OWL for construction industry: towards a recommendable and usable ifcOWL ontology[J]. Automation in Construction, 2016, 63: 100-133.
DOI URL |
[48] |
PAUWELS P, KRIJNEN T, TERKAJ W, et al. Enhancing the ifcOWL ontology with an alternative representation for geometric data[J]. Automation in Construction, 2017, 80: 77-94.
DOI URL |
[49] |
BEACH T H, REZGUI Y, LI H, et al. A rule-based semantic approach for automated regulatory compliance in the construction sector[J]. Expert Systems with Applications, 2015, 42(12): 5219-5231.
DOI URL |
[50] |
ZHANG J S, EL-GOHARY N M. Semantic NLP-based information extraction from construction regulatory documents for automated compliance checking[J]. Journal of Computing in Civil Engineering, 2016, 30(2): 4015014.1.
DOI URL |
[51] |
SALAMA D M, EL-GOHARY N M. Semantic text classification for supporting automated compliance checking in construction[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014106.
DOI URL |
[52] |
VENUGOPAL M, EASTMAN C M, SACKS R, et al. Semantics of model views for information exchanges using the industry foundation class schema[J]. Advanced Engineering Informatics, 2012, 26(2): 411-428.
DOI URL |
[53] | BELSKY M, SACKS R, BRILAKIS I. A Framework for semantic enrichment of IFC building models[C]// The 30th CIB W78 International Conference. Beijing: Tsinghua University Press, 2013: 514-523. |
[54] |
BELSKY M, SACKS R, BRILAKIS I. Semantic enrichment for building information modeling[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(4): 261-274.
DOI URL |
[55] |
BLOCH T, SACKS R. Clustering information types for semantic enrichment of building information models to support automated code compliance checking[J]. Journal of Computing in Civil Engineering, 2020, 34(6): 04020040.
DOI URL |
[56] |
PAUWELS P, VAN DEURSEN D, DE ROO J, et al. Three-dimensional information exchange over the semantic web for the domain of architecture, engineering, and construction[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2011, 25(4): 317-332.
DOI URL |
[57] | 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. |
Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese) | |
[58] | 张吉松, 于泽涵, 赵丽华. 基于一阶谓词逻辑的结构设计规范表示方法[J/OL]. 土木与环境工程学报: 中英文, 2022: 1-10. [2022-05-01]. https://kns.cnki.net/kcms/detail/50.1218.TU.20220423.2146.004.html. |
ZHANG J S, YU Z H, ZHAO L H. Representation of structural design specifications based on first-order predicate logic[J/OL]. Journal of Civil and Environmental Engineering, 2022: 1-10. [2022-05-01]. . (in Chinese) | |
[59] | World Wide Web Consortium. W3C standards[EB/OL]. (2021-04-24) [2022-05-01]. https://www.w3.org/standards/. |
[60] | World Wide Web Consortium. A semantic web rule language combining OWL and RuleML[EB/OL]. (2004-10-15) [2022-05-01]. http://www.w3.org/Submission/SWRL. |
[61] | RODRIGUEZ M A, BOLLEN J, VAN D S. A practical ontology for the large-scale modeling of scholarly artifacts and their usage[C]// The 7th ACM/IEEE-CS Joint Conference on Digital Libraries. New York: ACM, 2007: 278-287. |
[62] | NOY N, MCGUINNESS D L. Ontology development 101[EB/OL]. (2005-07-18) [2022-05-10]. http://protege.stanford.edu. |
[63] | Stanford University. Protégé[EB/OL]. (2018-03-01) [2022-05-01]. https://protege.stanford.edu. |
[64] | CONNOR M. Mapping master DSL[EB/OL]. (2020-06-20) [2022-05-01]. https://github.com/protegeproject/mappingmaster/wiki/MappingMasterDSL. |
[65] | NAWARI N. The challenge of computerizing building codes in a BIM environment[C]// International Conference on Computing in Civil Engineering. Reston: American Society of Civil Engineers, 2012: 285-292. |
[1] |
GAN Zi-chen , FAN Jing-jing , XUE Zhi-ting , LIN Ding-liang , XU Zhen.
Research on design responsibility and right traceability system
integrating BIM and blockchain
[J]. Journal of Graphics, 2023, 44(4): 810-817.
|
[2] | HE Qing, JING Chuan-yu, GAO Tian-ci, WANG Ping. Research on BIM model of railway track structure based on IFC standard extension [J]. Journal of Graphics, 2023, 44(2): 357-367. |
[3] | NAZHAER Mulatibieke, SHI Jian-yong, JIANG Liu, PAN Ze-yu, YANG Hai-tao , WANG Jia-liang. Research of BIM and ontology-based irregular building type checking [J]. Journal of Graphics, 2022, 43(5): 918-926. |
[4] | XIONG Chen, CHEN Li-bin, LI Lin-ze, XU Zhen, ZHAO Yang-ping. Crack visualization management method based on computer vision and BIM [J]. Journal of Graphics, 2022, 43(4): 721-728. |
[5] | JIANG Liu, SHI Jian-yong, FU Gong-yi, PAN Ze-yu, WANG Chao-yu. Identification of the plane irregularity of structures based on BIM and deep learning [J]. Journal of Graphics, 2022, 43(3): 522-529. |
[6] | DUAN Rui, DENG Hui, DENG Yi-chuan . Information communications technology assisted tower crane safety management-review and prospect [J]. Journal of Graphics, 2022, 43(1): 11-20. |
[7] | XUE Jing-guo, HOU Xue-liang . Location of cast-in-place concrete structural members based on BIM + CV [J]. Journal of Graphics, 2022, 43(1): 156-162. |
[8] | ZHAO Xue-feng, HOU Xiao, LIU Zhan-sheng, LI Meng-xuan . Research on closed-loop management system of BIM course teaching in universities [J]. Journal of Graphics, 2021, 42(6): 1011-1017. |
[9] | WANG Peng, ZHU Wei-long . Research on product family ontology modeling image mining method based on big data [J]. Journal of Graphics, 2021, 42(6): 1051-1060. |
[10] | ZHU Hui-xian, XU Zhao . Research on information collaboration and model construction for top-down design of prefabricated buildings [J]. Journal of Graphics, 2021, 42(2): 289-298. |
[11] | LIANG Yu-qing, JI Jiu-mao, YANG Jia-lei , ZHANG Dong-sheng, WANG Ke , WANG Ling-yu, . BIM evacuation design automation based on artificial intelligence [J]. Journal of Graphics, 2021, 42(2): 299-306. |
[12] | SUN Shao-nan, WU Jia-wei . Research on multi-objective optimization of passive building energy-saving factor based on BIM [J]. Journal of Graphics, 2021, 42(1): 124-132. |
[13] | ZHANG Ji-song , ZHAO Li-hua , CUI Ying-hui , REN Guo-qian , LI Hai-jiang. Code compliance checking of structural design based on BIM model [J]. Journal of Graphics, 2021, 42(1): 133-140. |
[14] | HOU Xue-liang , XUE Jing-guo , WANG Yi , ZENG Ying. Projection-based registration overlay method of construction image and BIM model [J]. Journal of Graphics, 2021, 42(1): 141-149. |
[15] | XU Jing-lin, GAO Shang, YU Fang-qiang, ZHAO Zhen . Method for automatically repairing physical connection relationship of electromechanical system [J]. Journal of Graphics, 2020, 41(5): 833-838. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||