Journal of Graphics ›› 2023, Vol. 44 ›› Issue (3): 513-520.DOI: 10.11996/JG.j.2095-302X.2023030513
Previous Articles Next Articles
LIU Bing1,2,3(), YE Cheng-xu1,2,3(
)
Received:
2022-09-26
Accepted:
2022-11-24
Online:
2023-06-30
Published:
2023-06-30
Contact:
YE Cheng-xu (1970-), professor, Ph.D. His main research interests cover machine learning and applications, information security, etc. E-mail:149926237@qq.com
About author:
LIU Bing (1998-), master student. His main research interests cover machine learning and medical image processing. E-mail:252859670@qq.com
Supported by:
CLC Number:
LIU Bing, YE Cheng-xu. Fine-grained classification model of lung disease for imbalanced data[J]. Journal of Graphics, 2023, 44(3): 513-520.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023030513
类别 | Precision | Recall | F1 |
---|---|---|---|
NORMAL | 0.981 | 0.978 | 0.979 |
PNEUMONIA | 0.987 | 0.989 | 0.988 |
COVID-19 | 0.985 | 0.985 | 0.985 |
TUBERCULOSIS | 0.977 | 0.970 | 0.973 |
Table 1 Evaluation index corresponding to each category
类别 | Precision | Recall | F1 |
---|---|---|---|
NORMAL | 0.981 | 0.978 | 0.979 |
PNEUMONIA | 0.987 | 0.989 | 0.988 |
COVID-19 | 0.985 | 0.985 | 0.985 |
TUBERCULOSIS | 0.977 | 0.970 | 0.973 |
模型 | ACC | Kappa | Precision | Recall | F1 |
---|---|---|---|---|---|
M1 | 0.968 | 0.945 | 0.952 | 0.943 | 0.947 |
M2 | 0.932 | 0.881 | 0.923 | 0.857 | 0.889 |
M3 | 0.943 | 0.900 | 0.925 | 0.876 | 0.900 |
M4 | 0.924 | 0.865 | 0.925 | 0.823 | 0.871 |
本文 | 0.985 | 0.973 | 0.983 | 0.981 | 0.981 |
Table 2 Comparative results of ablation experiments
模型 | ACC | Kappa | Precision | Recall | F1 |
---|---|---|---|---|---|
M1 | 0.968 | 0.945 | 0.952 | 0.943 | 0.947 |
M2 | 0.932 | 0.881 | 0.923 | 0.857 | 0.889 |
M3 | 0.943 | 0.900 | 0.925 | 0.876 | 0.900 |
M4 | 0.924 | 0.865 | 0.925 | 0.823 | 0.871 |
本文 | 0.985 | 0.973 | 0.983 | 0.981 | 0.981 |
模型 | ACC | Kappa | F1 | Params(M) |
---|---|---|---|---|
VGG16+ResNet50 | 0.912 | 0.846 | 0.852 | 164 |
VGG16+DenseNet121 | 0.933 | 0.897 | 0.877 | 147 |
ResNet50+DenseNet121 | 0.941 | 0.896 | 0.901 | 54 |
CoviNet[ | 0.958 | 0.936 | 0.937 | 116 |
PAM-DenseNet[ | 0.929 | 0.886 | 0.923 | 24 |
CoroNet[ | 0.920 | 0.893 | 0.921 | 33 |
BSGAN[ | 0.954 | 0.929 | 0.945 | 48 |
MHA-CoroCapsule[ | 0.972 | 0.957 | 0.962 | 20 |
EnsembleNet[ | 0.949 | 0.911 | 0.957 | 142 |
本文 | 0.985 | 0.973 | 0.981 | 15 |
Table 3 Comparative experimental results of different models
模型 | ACC | Kappa | F1 | Params(M) |
---|---|---|---|---|
VGG16+ResNet50 | 0.912 | 0.846 | 0.852 | 164 |
VGG16+DenseNet121 | 0.933 | 0.897 | 0.877 | 147 |
ResNet50+DenseNet121 | 0.941 | 0.896 | 0.901 | 54 |
CoviNet[ | 0.958 | 0.936 | 0.937 | 116 |
PAM-DenseNet[ | 0.929 | 0.886 | 0.923 | 24 |
CoroNet[ | 0.920 | 0.893 | 0.921 | 33 |
BSGAN[ | 0.954 | 0.929 | 0.945 | 48 |
MHA-CoroCapsule[ | 0.972 | 0.957 | 0.962 | 20 |
EnsembleNet[ | 0.949 | 0.911 | 0.957 | 142 |
本文 | 0.985 | 0.973 | 0.981 | 15 |
[1] | SONI M, GOMATHI S, KUMAR P, et al. Hybridizing convolutional neural network for classification of lung diseases[J]. International Journal of Swarm Intelligence Research, 2022, 13(2): 1-15. |
[2] |
FRIX A N, COUSIN F, REFAEE T, et al. Radiomics in lung diseases imaging: state-of-the-art for clinicians[J]. Journal of Personalized Medicine, 2021, 11(7): 602.
DOI URL |
[3] | 楚阳, 徐文龙. 基于计算机辅助诊断技术的阿尔兹海默症早期分类研究综述[J]. 计算机工程与科学, 2022, 44(5): 879-893. |
CHU Y, XU W L. Review of early classification of Alzheimer’s disease based on computer-aided diagnosis technology[J]. Computer Engineering & Science, 2022, 44(5): 879-893. (in Chinese) | |
[4] | 成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217. |
CHENG K Y, WANG N, SHI W X, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. (in Chinese) | |
[5] |
YU S X, FENG X X, WANG B, et al. Automatic classification of cervical cells using deep learning method[J]. IEEE Access, 2021, 9: 32559-32568.
DOI URL |
[6] | BHAN A, KAPOOR S, GULATI M. Diagnosing Parkinson's disease in early stages using image enhancement, ROI extraction and deep learning algorithms[C]// The 2nd International Conference on Intelligent Engineering and Management. New York: IEEE Press, 2021: 521-525. |
[7] |
SHI F, CHEN B J, CAO Q Q, et al. Semi-supervised deep transfer learning for benign-malignant diagnosis of pulmonary nodules in chest CT images[J]. IEEE Transactions on Medical Imaging, 2022, 41(4): 771-781.
DOI URL |
[8] |
MIYOSHI H, SATO K, KABEYA Y, et al. Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma[J]. Laboratory Investigation, 2020, 100(10): 1300-1310.
DOI PMID |
[9] |
SHI W Q, TONG L, ZHU Y D, et al. COVID-19 automatic diagnosis with radiographic imaging: explainable attention transfer deep neural networks[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2376-2387.
DOI URL |
[10] | 李朝林, 张荣芬, 刘宇红. 融入多尺度双线性注意力的轻量化眼底疾病多分类网络[J]. 计算机应用研究, 2022, 39(7): 2183-2189, 2195. |
LI C L, ZHANG R F, LIU Y H. Lightweight fundus disease multi-classification network with multi-scale bilinear attention[J]. Application Research of Computers, 2022, 39(7): 2183-2189, 2195. (in Chinese) | |
[11] | LAFRAXO S, EL ANSARI M. CoviNet: automated COVID-19 detection from X-rays using deep learning techniques[C]// The 6th IEEE Congress on Information Science and Technology. New York: IEEE Press, 2021: 489-494. |
[12] |
DING Y F, MA Z Y, WEN S G, et al. AP-CNN: weakly supervised attention pyramid convolutional neural network for fine-grained visual classification[J]. IEEE Transactions on Image Processing, 2021, 30: 2826-2836.
DOI PMID |
[13] | YANG L F, LI X, SONG R J, et al. Dynamic MLP for fine-grained image classification by leveraging geographical and temporal information[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10935-10944. |
[14] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[15] | TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// 2019 International Conference on Machine Learning. New York: IEEE Press, 2019: 6105-6114. |
[16] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
DOI PMID |
[17] | GAO Y, BEIJBOM O, ZHANG N, et al. Compact bilinear pooling[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 317-326. |
[18] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// 2018 European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19. |
[19] |
DONG Y N, LIU Q W, DU B, et al. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2022, 31: 1559-1572.
DOI URL |
[20] |
柴文光, 李嘉怡. 重加权在多类别不平衡医学图像检测中的应用[J]. 计算机工程与应用, 2022, 58(8): 237-242.
DOI |
CHAI W G, LI J Y. Application of re-weight method in multiple class-imbalance medical images detection[J]. Computer Engineering and Applications, 2022, 58(8): 237-242. (in Chinese)
DOI |
|
[21] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
DOI URL |
[22] |
XIAO B, YANG Z Y, QIU X M, et al. PAM-DenseNet: a deep convolutional neural network for computer-aided COVID-19 diagnosis[J]. IEEE Transactions on Cybernetics, 2022, 52(11): 12163-12174.
DOI URL |
[23] |
KHAN A I, SHAH J L, BHAT M M. CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images[J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105581.
DOI URL |
[24] | PASTORINO J, BISWAS A K. Data adequacy bias impact in a data-blinded semi-supervised GAN for privacy-aware COVID-19 chest X-ray classification[C]// The 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York: ACM, 2022: 1-8. |
[25] |
LI F D, LU X Y, YUAN J J. MHA-CoroCapsule: multi-head attention routing-based capsule network for COVID-19 chest X-ray image classification[J]. IEEE Transactions on Medical Imaging, 2022, 41(5): 1208-1218.
DOI URL |
[26] | AL-MONSUR A, KABIR M R, AR-RAFI A M, et al. Covid-EnsembleNet: an ensemble based approach for detecting covid-19 by utilising chest X-ray images[C]// 2022 IEEE World AI IoT Congress. New York: IEEE Press, 2022: 351-356. |
[27] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
DOI |
[1] |
LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan.
Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
[J]. Journal of Graphics, 2023, 44(4): 658-666.
|
[2] |
LI Xin , PU Yuan-yuan, ZHAO Zheng-peng , XU Dan , QIAN Wen-hua.
Content semantics and style features match consistent
artistic style transfer
[J]. Journal of Graphics, 2023, 44(4): 699-709.
|
[3] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[4] | SHI Cai-juan, SHI Ze, YAN Jin-wei, BI Yang-yang. Bi-directionally aligned VAE based on double semantics for generalized zero-shot learning [J]. Journal of Graphics, 2023, 44(3): 521-530. |
[5] | LU Qiu, SHAO Hua-ze , ZHANG Yun-lei. Dynamic balanced multi-scale feature fusion for colorectal polyp segmentation [J]. Journal of Graphics, 2023, 44(2): 225-232. |
[6] | LI Xiao-bo , LI Yang-gui, GUO Ning , FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
[7] | ZHANG Qian, WANG Xia-li, WANG Wei-hao, WU Li-zhan, LI Chao. Cell counting method based on multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(1): 41-49. |
[8] |
GU Yu, ZHAO Jun .
Research on image detection algorithm of freight train brake
shoe bolt and brake shoe fault
[J]. Journal of Graphics, 2023, 44(1): 88-94.
|
[9] | DONG Zhe-tong, LIN Hong-wei. Computer aided topological design ——survey on geometric design and processing based on persistent homology [J]. Journal of Graphics, 2022, 43(6): 957-966. |
[10] | GUO Wen , LI Dong , YUAN Fei. 1. School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai Shandong 264005, China; 2. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100195, China [J]. Journal of Graphics, 2022, 43(6): 1124-1133. |
[11] | MO Han-lin, HAO You, GUO Rui, HAO Hong-xiang, ZHANG He, LI Qi, LI Hua, . The construction and application of integral invariants and differential invariants of graphics and images [J]. Journal of Graphics, 2022, 43(6): 1182-1192. |
[12] | WU Li-zhan, WANG Xia-li, ZHANG Qian, WANG Wei-hao, LI Chao . An object detection method of falling person based on optimized YOLOv5s [J]. Journal of Graphics, 2022, 43(5): 791-802. |
[13] | WANG Su-qin, REN Qi, SHI Min, ZHU Deng-ming. Product surface defect detection and segmentation based on anomaly detection [J]. Journal of Graphics, 2022, 43(3): 377-386. |
[14] | CAO Li, WU Yao, XU Yi-ke. 3D model wireframe extraction method based on medial axis expression [J]. Journal of Graphics, 2022, 43(3): 461-468. |
[15] | LI Yang-ke, SONG Quan-bo, ZHOU Yuan-feng. Spatiotemporal fusion network for hand gesture recognition and virtual signature system [J]. Journal of Graphics, 2022, 43(3): 504-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||