Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 699-709.DOI: 10.11996/JG.j.2095-302X.2023040699
Previous Articles Next Articles
LI Xin1(), PU Yuan-yuan1,2(
), ZHAO Zheng-peng1, XU Dan1, QIAN Wen-hua1
Received:
2022-12-06
Accepted:
2023-03-06
Online:
2023-08-31
Published:
2023-08-16
Contact:
PU Yuan-yuan (1972-), professor, Ph.D. Her main research interests cover digital image processing, non-realistic drawing, and scientific understanding of visual arts, etc. E-mail:About author:
LI Xin (1997-), master student. His main research interest covers image style transfer. E-mail:3323163785@qq.com
Supported by:
CLC Number:
LI Xin, PU Yuan-yuan, ZHAO Zheng-peng, XU Dan, QIAN Wen-hua. Content semantics and style features match consistent artistic style transfer[J]. Journal of Graphics, 2023, 44(4): 699-709.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040699
方法 | FID↓ | CF↑ | GE↑ | LP↑ | |
---|---|---|---|---|---|
t-c | t-s | ||||
Ours | 300.04 | 506.83 | 0.57 | 0.82 | 0.52 |
PAMA | 483.99 | 498.73 | 0.50 | 0.86 | 0.50 |
AdaAttN | 357.16 | 508.73 | 0.53 | 0.85 | 0.49 |
MANet | 499.84 | 497.21 | 0.47 | 0.80 | 0.48 |
SANet | 483.95 | 532.29 | 0.51 | 0.84 | 0.50 |
Table 1 Quantitative comparison
方法 | FID↓ | CF↑ | GE↑ | LP↑ | |
---|---|---|---|---|---|
t-c | t-s | ||||
Ours | 300.04 | 506.83 | 0.57 | 0.82 | 0.52 |
PAMA | 483.99 | 498.73 | 0.50 | 0.86 | 0.50 |
AdaAttN | 357.16 | 508.73 | 0.53 | 0.85 | 0.49 |
MANet | 499.84 | 497.21 | 0.47 | 0.80 | 0.48 |
SANet | 483.95 | 532.29 | 0.51 | 0.84 | 0.50 |
方法 | 时间 | |
---|---|---|
256×256 | 512×512 | |
Ours | 9.42 | 10.23 |
PAMA | 8.53 | 9.87 |
AdaAttN | 19.76 | 22.52 |
MANet | 8.20 | 8.99 |
SANet | 4.79 | 6.35 |
Table 2 Average running time of image stylization (ms)
方法 | 时间 | |
---|---|---|
256×256 | 512×512 | |
Ours | 9.42 | 10.23 |
PAMA | 8.53 | 9.87 |
AdaAttN | 19.76 | 22.52 |
MANet | 8.20 | 8.99 |
SANet | 4.79 | 6.35 |
[1] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2242-2251. |
[2] | GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2414-2423. |
[3] | GATYS L A, ECKER A S, BETHGE M, et al. Controlling perceptual factors in neural style transfer[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 3730-3738. |
[4] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[5] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
DOI URL |
[6] | CHANDRAN P, ZOSS G, GOTARDO P, et al. Adaptive convolutions for structure-aware style transfer[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7972-7981. |
[7] | WU H, SUN Z X, YUAN W H. Direction-aware neural style transfer[C]// The 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1163-1171. |
[8] | ZHI Y H, WEI H W, NI B B. Structure guided photorealistic style transfer[C]// The 26th ACM International Conference on Multimedia. New York: ACM, 2018: 365-373. |
[9] | HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 1510-1519. |
[10] |
JING Y C, LIU X, DING Y K, et al. Dynamic instance normalization for arbitrary style transfer[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 4369-4376.
DOI URL |
[11] | LI Y J, FANG C, YANG J M, et al. Diversified texture synthesis with feed-forward networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 266-274. |
[12] | PARK D Y, LEE K H. Arbitrary style transfer with style-attentional networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5873-5881. |
[13] | DENG Y Y, TANG F, DONG W M, et al. Arbitrary style transfer via multi-adaptation network[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2719-2727. |
[14] | LIU S H, LIN T W, HE D L, et al. AdaAttN: revisit attention mechanism in arbitrary neural style transfer[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 6629-6638. |
[15] | LUO X, HAN Z, YANG L K, et al. Consistent style transfer[EB/OL]. (2022-01-06) [2022-07-16]. https://arxiv.org/abs/2201.02233. |
[16] | LIU X C, CHENG M M, LAI Y K, et al. Depth-aware neural style transfer[C]// Proceedings of the Symposium on Non-Photorealistic Animation and Rendering. New York: ACM, 2017: 1-10. |
[17] | WANG X, OXHOLM G, ZHANG D, et al. Multimodal transfer: a hierarchical deep convolutional neural network for fast artistic style transfer[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 7178-7186. |
[18] | JING Y C, LIU Y, YANG Y Z, et al. Stroke Controllable Fast Style Transfer with Adaptive Receptive Fields[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 244-260. |
[19] | KOTOVENKO D, SANAKOYEU A, LANG S, et al. Content and style disentanglement for artistic style transfer[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 4421-4430. |
[20] | CHEN D D, YUAN L, LIAO J, et al. StyleBank: an explicit representation for neural image style transfer[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2770-2779. |
[21] | LI Y J, FANG C, YANG J M, et al. Diversified texture synthesis with feed-forward networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 266-274. |
[22] | SHENG L, LIN Z Y, SHAO J, et al. Avatar-net: multi-scale zero-shot style transfer by feature decoration[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8242-8250. |
[23] | GU S Y, CHEN C L, LIAO J, et al. Arbitrary style transfer with deep feature reshuffle[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8222-8231. |
[24] |
LIU S G, ZHU T. Structure-guided arbitrary style transfer for artistic image and video[J]. IEEE Transactions on Multimedia, 2022, 24: 1299-1312.
DOI URL |
[25] | LI Y, FANG C, YANG J, et al. Universal style transfer via feature transforms[EB/OL]. [2022-07-15]. https://dl.acm.org/doi/10.5555/3294771.3294808. |
[26] | YAO Y, REN J Q, XIE X S, et al. Attention-aware multi-stroke style transfer[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 1467-1475. |
[27] | CHEN H, WANG Z, ZHANG H, et al. Artistic style transfer with internal-external learning and contrastive learning[EB/OL]. [2022-07-10]. https://openreview.net/forum?id=hm0i-cunzGW. |
[28] | KOLKIN N, SALAVON J, SHAKHNAROVICH G. Style transfer by relaxed optimal transport and self-similarity[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 10043-10052. |
[29] | AFIFI M, BRUBAKER M A, BROWN M S. HistoGAN: controlling colors of GAN-generated and real images via color histograms[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7937-7946. |
[30] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 740-755. |
[31] |
PHILLIPS F, MACKINTOSH B. Wiki art gallery, inc.: a case for critical thinking[J]. Issues in Accounting Education, 2011, 26(3): 593-608.
DOI URL |
[32] | KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. (2017-01-30) [2022-07-17]. https://arxiv.org/abs/1412.6980. |
[33] |
WANG Z Z, ZHAO L, CHEN H B, et al. Evaluate and improve the quality of neural style transfer[J]. Computer Vision and Image Understanding, 2021, 207: 103203.
DOI URL |
[1] |
YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming.
Reference based transformer texture migrates depth imagessuper resolution reconstruction
[J]. Journal of Graphics, 2023, 44(5): 861-867.
|
[2] |
SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu.
Tunnel fire detection based on improved student-teacher network
[J]. Journal of Graphics, 2023, 44(5): 978-987.
|
[3] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[4] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[5] | DENG Wei-ming, YANG Tie-jun, LI Chun-chun, HUANG Lin. Object detection for nameplate based on neural architecture search [J]. Journal of Graphics, 2023, 44(4): 718-727. |
[6] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[7] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[8] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[9] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[10] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. |
[11] | LIU Bing, YE Cheng-xu. Fine-grained classification model of lung disease for imbalanced data [J]. Journal of Graphics, 2023, 44(3): 513-520. |
[12] | SHI Cai-juan, SHI Ze, YAN Jin-wei, BI Yang-yang. Bi-directionally aligned VAE based on double semantics for generalized zero-shot learning [J]. Journal of Graphics, 2023, 44(3): 521-530. |
[13] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. |
[14] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[15] | LU Qiu, SHAO Hua-ze, ZHANG Yun-lei. Dynamic balanced multi-scale feature fusion for colorectal polyp segmentation [J]. Journal of Graphics, 2023, 44(2): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||