Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 640-657.DOI: 10.11996/JG.j.2095-302X.2023040640
• Review • Previous Articles Next Articles
XIE Hong-xia1(), HU Yu-ning1, ZHANG Yun2(
), WANG Ya-qi2, DU Hui2, QIN Ai-hong2
Received:
2023-02-03
Accepted:
2023-04-11
Online:
2023-08-31
Published:
2023-08-16
Contact:
ZHANG Yun (1984-), professor, Ph.D. His main research interests cover computer graphics, virtue reality, etc. E-mail:About author:
XIE Hong-xia (1971-), lecturer, master. Her main research interests cover computer technology application, virtue reality. E-mail:xiehx@zucc.edu.cn
Supported by:
CLC Number:
XIE Hong-xia, HU Yu-ning, ZHANG Yun, WANG Ya-qi, DU Hui, QIN Ai-hong. Survey of methods for scene analysis and content processing in panoramic images and videos[J]. Journal of Graphics, 2023, 44(4): 640-657.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040640
研究大类 | 研究内容 | 代表文献 | 主要特点 |
---|---|---|---|
1全景图像视频的场景分析 | 1.1全景图像视频的深度学习网络 | 文献[14-15] | 基于立方体投影表示 |
文献[16-17] | 基于球面的投影表示 | ||
文献[18] | 基于等矩形的投影表示 | ||
1.2场景深度恢复 | 文献[24-26] | 单目深度恢复——基于卷积神经网络 | |
文献[33-34] | 双目深度恢复——基于全局优化的方法 | ||
文献[35-38] | 双目深度恢复——基于深度学习的方法 | ||
1.3场景重要性检测 | 文献[45-46] | 全景图像重要性检测——基于平面投影 | |
文献[48] | 全景图像重要性检测——基于球面 | ||
文献[51] | 全景视频重要性检测——基于立方体填充 | ||
文献[52-53] | 全景视频重要性检测——基于球面卷积 | ||
文献[55] | 全景视频重要性检测——基于视点预测 | ||
1.4场景目标检测 | 文献[60-61] | 基于单一投影的方法 | |
文献[62-63] | 基于视野并交集的方法 | ||
文献[64-65] | 基于多种投影的方法 |
Table 1 Summary of research work on scene analysis of panoramic images and videos
研究大类 | 研究内容 | 代表文献 | 主要特点 |
---|---|---|---|
1全景图像视频的场景分析 | 1.1全景图像视频的深度学习网络 | 文献[14-15] | 基于立方体投影表示 |
文献[16-17] | 基于球面的投影表示 | ||
文献[18] | 基于等矩形的投影表示 | ||
1.2场景深度恢复 | 文献[24-26] | 单目深度恢复——基于卷积神经网络 | |
文献[33-34] | 双目深度恢复——基于全局优化的方法 | ||
文献[35-38] | 双目深度恢复——基于深度学习的方法 | ||
1.3场景重要性检测 | 文献[45-46] | 全景图像重要性检测——基于平面投影 | |
文献[48] | 全景图像重要性检测——基于球面 | ||
文献[51] | 全景视频重要性检测——基于立方体填充 | ||
文献[52-53] | 全景视频重要性检测——基于球面卷积 | ||
文献[55] | 全景视频重要性检测——基于视点预测 | ||
1.4场景目标检测 | 文献[60-61] | 基于单一投影的方法 | |
文献[62-63] | 基于视野并交集的方法 | ||
文献[64-65] | 基于多种投影的方法 |
Fig. 3 CNN based on cube map, sphere and equirectangular representations ((a) Cubmap representation[14]; (b) SpherePHD representation[16]; (c) Equirectangular representation[18])
Fig. 4 The sampling grid is deformed according to the image distortion model, so that the receptive field is rectified[4] ((a) Input feature map; (b) Output feature map)
Fig. 5 The tangent-patch is proposed to remove panoramic distortions, and the token flows force the token positions to fit the structure of the sofa better[26]
Fig. 6 360° stereo depth estimation network[38] ((a) Two-branch feature extractor; (b) The ASPP module to enlarge the receptive field; (c) The learnable cost volume to account for the nonlinear spherical projection)
研究大类 | 研究内容 | 代表文献 | 主要特点 |
---|---|---|---|
2全景图像视频的内容处理 | 2.1交互式浏览 | 文献[72-73] | 自动视频导航 |
文献[75-77] | 交互式和可视化浏览 | ||
2.2去抖和校正 | 文献[78] | 自动全景图像校正 | |
文献[79-80] | 全景视频去抖 | ||
文献[81] | 全景视频去抖+校正 | ||
2.3内容编辑 | 文献[83-85] | 全景内容补全 | |
文献[87-88] | 全景克隆与颜色编辑 | ||
文献[89-90] | 内容增强——全景图超分辨率 |
Table 2 Summary of research work on content processing of panoramic images and videos
研究大类 | 研究内容 | 代表文献 | 主要特点 |
---|---|---|---|
2全景图像视频的内容处理 | 2.1交互式浏览 | 文献[72-73] | 自动视频导航 |
文献[75-77] | 交互式和可视化浏览 | ||
2.2去抖和校正 | 文献[78] | 自动全景图像校正 | |
文献[79-80] | 全景视频去抖 | ||
文献[81] | 全景视频去抖+校正 | ||
2.3内容编辑 | 文献[83-85] | 全景内容补全 | |
文献[87-88] | 全景克隆与颜色编辑 | ||
文献[89-90] | 内容增强——全景图超分辨率 |
Fig. 10 Interactive and automatic 360° video navigation [73] ((a) 360° video; (b) Normal field-of-view (NFoV) video converted from (a); (c) Camera path for converting (a) to (b))
Fig. 12 Hand-held 360° camera, panoramic video, and the tracked motion before and after stabilization[79] ((a) Hand-held 360° cameras; (b) Full-spherical 360°×180° video; (c) Original motion tracks; (d) Pure rotation stabilization; (e) Deformed rotation stabilization)
Fig. 15 360° panorama edit propagation based on the RBF interpolation[88] ((a) Input image; (b) Color quantization; (c) Adaptive sampling; (d) RBF interpolation; (e) Result rendering; (f) Spherical & Zoom-in views)
[1] | HTC. VIVE XR Elite[EB/OL]. (2022-12-10]) [2023-01-02]. https://www.vive.com/uk/product/vive-xr-elite/overview/. |
[2] | Meta. Quest Pro[EB/OL]. (2022-11-10) [2023-01-02]. https://www.meta.com/gb/quest/quest-pro/. |
[3] | SHEN Z J, LIN C Y, NIE L, et al. Distortion-tolerant monocular depth estimation on omnidirectional images using dual-cubemap[C]// 2021 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2021: 1-6. |
[4] | TATENO K, NAVAB N, TOMBARI F. Distortion-aware convolutional filters for dense prediction in panoramic images[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 732-750. |
[5] | SU Y C, GRAUMAN K. Learning spherical convolution for fast features from 360° imagery[EB/OL]. [2022-12-02]. https://arxiv.org/abs/1708.00919. |
[6] | COORS B, CONDURACHE A P, GEIGER A. SphereNet: learning spherical representations for detection and classification in omnidirectional images[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 525-541. |
[7] | WANG M, LI Y J, ZHANG W X, et al. Transitioning360: content-aware NFoV virtual camera paths for 360° video playback[C]// 2020 IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2020: 185-194. |
[8] | LI Y J, SHI J C, ZHANG F L, et al. Bullet comments for 360° video[C]// 2022 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2022: 1-10. |
[9] |
ZHANG Y, ZHANG F L, LAI Y K, et al. Efficient propagation of sparse edits on 360∘ panoramas[J]. Computers & Graphics, 2021, 96: 61-70.
DOI URL |
[10] |
WANG W G, LAI Q X, FU H Z, et al. Salient object detection in the deep learning era: an In-depth survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 3239-3259.
DOI URL |
[11] | BAI S J, GENG Z Y, SAVANI Y, et al. Deep equilibrium optical flow estimation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 610-620. |
[12] | GUO M H, LU C Z, HOU Q B, et al. SegNeXt: rethinking convolutional attention design for semantic segmentation[EB/OL]. [2022-12-02]. https://arxiv.org/abs/2209.08575. |
[13] |
WANG W G, SHEN J B, XIE J W, et al. Revisiting video saliency prediction in the deep learning era[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 220-237.
DOI URL |
[14] | XIONG B, GRAUMAN K. Snap angle prediction for 360° panoramas[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-20. |
[15] | WOO HAN S, YOUNG SUH D. A 360-degree panoramic image inpainting network using a cube map[J]. Computers, Materials & Continua, 2020, 66(1): 213-228. |
[16] | LEE Y, JEONG J, YUN J, et al. SpherePHD: applying CNNs on a spherical PolyHeDron representation of 360° images[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9173-9181. |
[17] | EDER M, SHVETS M, LIM J, et al. Tangent images for mitigating spherical distortion[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 12423-12431. |
[18] | SU Y C, GRAUMAN K. Kernel transformer networks for compact spherical convolution[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9434-9443. |
[19] | BHOI A. Monocular depth estimation: a survey[EB/OL]. (2019-01-27) [2022-12-23]. https://arxiv.org/abs/1901.09402. |
[20] |
ZHANG Y R, GONG M G, LI J Z, et al. Self-supervised monocular depth estimation with multiscale perception[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2022, 31: 3251-3266.
DOI URL |
[21] |
LEI Z Y, WANG Y, LI Z J, et al. Attention based multilayer feature fusion convolutional neural network for unsupervised monocular depth estimation[J]. Neurocomputing, 2021, 423: 343-352.
DOI URL |
[22] |
MING Y, MENG X Y, FAN C X, et al. Deep learning for monocular depth estimation: a review[J]. Neurocomputing, 2021, 438: 14-33.
DOI URL |
[23] | WANG F E, YEH Y H, SUN M, et al. BiFuse:monocular 360 depth estimation via Bi-projection fusion[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 459-468. |
[24] | JIN L, XU Y Y, ZHENG J, et al. Geometric structure based and regularized depth estimation from 360 indoor imagery[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 886-895. |
[25] | PINTORE G, AGUS M, ALMANSA E, et al. SliceNet: deep dense depth estimation from a single indoor panorama using a slice-based representation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11531-11540. |
[26] | SHEN Z J, LIN C Y, LIAO K, et al. PanoFormer: panorama transformer for indoor 360° depth estimation[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2022: 195-211. |
[27] |
LI M, WANG S B, YUAN W H, et al. S2Net: accurate panorama depth estimation on spherical surface[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 1053-1060.
DOI URL |
[28] | REY-AREA M, YUAN M Z, RICHARDT C. 360MonoDepth: high-resolution 360° monocular depth estimation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 3752-3762. |
[29] | PENG C H, ZHANG J Y. High-resolution depth estimation for 360° panoramas through perspective and panoramic depth images registration[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2023: 3115-3124. |
[30] | WANG L, YANG R G. Global stereo matching leveraged by sparse ground control points[C]// 2011 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2011: 3033-3040. |
[31] |
YUAN W M, MENG C, TONG X Y, et al. Efficient local stereo matching algorithm based on fast gradient domain guided image filtering[J]. Signal Processing: Image Communication, 2021, 95: 116280.
DOI URL |
[32] |
YANG Q X. Hardware-efficient bilateral filtering for stereo matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 1026-1032.
DOI PMID |
[33] |
LI S G. Binocular spherical stereo[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(4): 589-600.
DOI URL |
[34] |
KIM H, HILTON A. 3D scene reconstruction from multiple spherical stereo pairs[J]. International Journal of Computer Vision, 2013, 104(1): 94-116.
DOI URL |
[35] | ŽBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1592-1599. |
[36] | CHEN B L, JUNG C. Patch-based stereo matching using 3D convolutional neural networks[C]// The 25th IEEE International Conference on Image Processing. New York: IEEE Press, 2018: 3633-3637. |
[37] | CHANG J R, CHEN Y S. Pyramid stereo matching network[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 5410-5418. |
[38] | WANG N H, SOLARTE B, TSAI Y H, et al. 360SD-net: 360° stereo depth estimation with learnable cost volume[C]// 2020 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2020: 582-588. |
[39] | WEGNER K, STANKIEWICZ O, GRAJEK T, et al. Depth estimation from stereoscopic 360-degree video[C]// The 25th IEEE International Conference on Image Processing. New York: IEEE Press, 2018: 2945-2948. |
[40] |
BORJI A, CHENG M M, HOU Q B, et al. Salient object detection: a survey[J]. Computational Visual Media, 2019, 5(2): 117-150.
DOI |
[41] |
WU Y H, LIU Y, ZHANG L, et al. EDN: salient object detection via extremely-downsampled network[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2022, 31: 3125-3136.
DOI URL |
[42] | 张璐. 基于深度特征融合的显著目标检测算法研究[D]. 大连: 大连理工大学, 2021. |
ZHANG L. Research on salient object detection algorithms based on deep feature integration[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
[43] |
WANG W G, SHEN J B, XIE J W, et al. Revisiting video saliency prediction in the deep learning era[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 220-237.
DOI URL |
[44] |
LIU J J, LIU Z A, PENG P, et al. Rethinking the U-shape structure for salient object detection[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2021, 30: 9030-9042.
DOI URL |
[45] |
MONROY R, LUTZ S, CHALASANI T, et al. SalNet360: Saliency maps for omni-directional images with CNN[J]. Signal Processing: Image Communication, 2018, 69: 26-34.
DOI URL |
[46] |
LI J, SU J M, XIA C Q, et al. Distortion-adaptive salient object detection in 360° omnidirectional images[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(1): 38-48.
DOI URL |
[47] |
MA G X, LI S, CHEN C, et al. Stage-wise salient object detection in 360° omnidirectional image via object-level semantical saliency ranking[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(12): 3535-3545.
DOI URL |
[48] | LV H R, YANG Q, LI C L, et al. SalGCN: saliency prediction for 360-degree images based on spherical graph convolutional networks[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 682-690. |
[49] |
ZHANG R P, CHEN C Y, ZHANG J C, et al. 360-degree visual saliency detection based on fast-mapped convolution and adaptive equator-bias perception[J]. The Visual Computer, 2023, 39(3): 1163-1180.
DOI |
[50] | GAO P, CHEN X L, QUAN R, et al. MRGAN360: multi-stage recurrent generative adversarial network for 360 degree image saliency prediction[EB/OL]. [2023-01-13]. https://arxiv.org/abs/2303.08525. |
[51] | CHENG H T, CHAO C H, DONG J D, et al. Cube padding for weakly-supervised saliency prediction in 360° videos[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 1420-1429. |
[52] | ZHANG Z H, XU Y Y, YU J Y, et al. Saliency detection in 360° videos[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 504-520. |
[53] |
QIAO M L, XU M, WANG Z L, et al. Viewport-dependent saliency prediction in 360° video[J]. IEEE Transactions on Multimedia, 2021, 23: 748-760.
DOI URL |
[54] |
DU R F, VARSHNEY A. Saliency computation for virtual cinematography in 360° videos[J]. IEEE Computer Graphics and Applications, 2021, 41(4): 99-106.
DOI PMID |
[55] | BERNAL-BERDUN E, MARTIN D, GUTIERREZ D, et al. SST-sal: a spherical spatio-temporal approach for saliency prediction in 360° videos[J]. Computers & Graphics, 2022, 106, C: 200-209. |
[56] | YUN H, LEE S H, KIM G. Panoramic vision transformer for saliency detection in 360° videos[M]// Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 422-439. |
[57] | ZHANG D W, HAN J W, CHENG G, et al. Weakly supervised object localization and detection: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5866-5885. |
[58] |
LAI W S, HUANG Y J, JOSHI N, et al. Semantic-driven generation of hyperlapse from 360 degree video[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(9): 2610-2621.
DOI URL |
[59] | XIAO J X, EHINGER K A, OLIVA A, et al. Recognizing scene viewpoint using panoramic place representation[C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2012: 2695-2702. |
[60] | YANG W, QIAN Y, KÄMÄRÄINEN J K, et al. Object detection in equirectangular panorama[C]// The 24th International Conference on Pattern Recognition. New York: IEEE Press, 2018: 2190-2195. |
[61] | WANG K H, LAI S H. Object detection in curved space for 360-degree camera[C]// 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2019: 3642-3646. |
[62] | ZHAO P Y, YOU A S, ZHANG Y X, et al. Spherical criteria for fast and accurate 360° object detection[J]. The AAAI Conference on Artificial Intelligence, 2020, 34(7): 12959-12966. |
[63] | CAO M, IKEHATA S, AIZAWA K. Field-of-view IoU for object detection in 360° images[EB/OL]. [2022-12-12]. https://arxiv.org/abs/2202.03176. |
[64] |
ZHENG Z S, LIN C Y, NIE L, et al. Bi-projection for 360° image object detection bridged by RoI searcher[J]. Journal of Visual Communication and Image Representation, 2022, 89: 103660.
DOI URL |
[65] | CAO M, IKEHATA S, AIZAWA K. Dual-erp representation for object detection in 360° images[C]// 2022 IEEE International Conference on Image Processing. New York: IEEE Press, 2022: 2016-2020. |
[66] |
WIEN M, BOYCE J M, STOCKHAMMER T, et al. Standardization status of immersive video coding[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(1): 5-17.
DOI |
[67] | JPEG Requirements Subgroup. JPEG 360 metadata use cases[EB/OL]. (2018-02-02) [2023-01-02]. https://jpeg.org/downloads/jpeg360/JPEG360-use-cases.pdf. |
[68] |
XU M, LI C, ZHANG S Y, et al. State-of-the-art in 360° video/image processing: perception, assessment and compression[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(1): 5-26.
DOI URL |
[69] |
GUTIÉRREZ J, DAVID E, RAI Y, et al. Toolbox and dataset for the development of saliency and scanpath models for omnidirectional/360° still images[J]. Signal Processing: Image Communication, 2018, 69: 35-42.
DOI URL |
[70] |
CHEN J Y, LUO Z X, WANG Z L, et al. Live360: viewport-aware transmission optimization in live 360-degree video streaming[J]. IEEE Transactions on Broadcasting, 2023, 69(1): 85-96.
DOI URL |
[71] |
HU M, WANG L F, TAN B, et al. Two-tier 360-degree video delivery control in multiuser immersive communications systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4119-4123.
DOI URL |
[72] | HU H N, LIN Y C, LIU M Y, et al. Deep 360 pilot: learning a deep agent for piloting through 360° sports videos[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1396-1405. |
[73] | KANG K, CHO S. Interactive and automatic navigation for 360° video playback[J]. ACM Transactions on Graphics, 2019, 38(4): 108:1-108:11. |
[74] |
IRFAN M, MUHAMMAD K, SAJJAD M, et al. Deepview: deep-learning-based users field of view selection in 360° videos for industrial environments[J]. IEEE Internet of Things Journal, 2023, 10(4): 2903-2912.
DOI URL |
[75] | PAVEL A, HARTMANN B, AGRAWALA M. Shot orientation controls for interactive cinematography with 360 video[C]// The 30th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2017: 289-297. |
[76] | WALLGRÜN J O, BAGHER M M, SAJJADI P, et al. A comparison of visual attention guiding approaches for 360° image-based VR tours[C]// 2020 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2020: 83-91. |
[77] | KUMAR K, PORETSKI L, LI J N, et al. Tourgether360: collaborative exploration of 360° videos using pseudo-spatial navigation[J]. Proceedings of the ACM on Human-Computer Interaction, 2022, 6(CSCW2): 1-27. |
[78] |
JUNG J, KIM B, LEE J Y, et al. Robust upright adjustment of 360 spherical panoramas[J]. The Visual Computer, 2017, 33(6): 737-747.
DOI URL |
[79] | KOPF J. 360° video stabilization[J]. ACM Transactions on Graphics, 2016, 35(6): 1-9. |
[80] | SHEN L C, HUANG T K, CHEN C S, et al. A 2.5D approach to 360 panorama video stabilization[C]// 2018 25th IEEE International Conference on Image Processing. New York: IEEE Press, 2018: 3184-3188. |
[81] | TANG C Z, WANG O, LIU F, et al. Joint stabilization and direction of 360° videos[J]. ACM Transactions on Graphics, 2019, 38(2): 1-13. |
[82] |
CHEN Z Z, LI Y M, ZHANG Y X. Recent advances in omnidirectional video coding for virtual reality: projection and evaluation[J]. Signal Processing, 2018, 146: 66-78.
DOI URL |
[83] | GAO J H, BROWN M S. An interactive editing tool for correcting panoramas[C]// SA ’12: SIGGRAPH Asia 2012 Technical Briefs. New York: ACM, 2012: 31:1-31:4. |
[84] |
ZHU Z, MARTIN R R, HU S M. Panorama completion for street views[J]. Computational Visual Media, 2015, 1(1): 49-57.
DOI URL |
[85] | SHANG Z Y, LIU Y W, LI G Y, et al. Viewport-oriented panoramic image inpainting[C]// 2022 IEEE International Conference on Image Processing. New York: IEEE Press, 2022: 3031-3035. |
[86] |
XU B B, PATHAK S, FUJII H, et al. Spatio-temporal video completion in spherical image sequences[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2032-2039.
DOI URL |
[87] | ZHAO Q, WAN L, FENG W, et al. 360 panorama cloning on sphere[EB/OL]. [2022-12-12]. https://arxiv.org/abs/1709.01638. |
[88] |
ZHANG Y, ZHANG F L, ZHU Z, et al. Fast edit propagation for 360 degree panoramas using function interpolation[J]. IEEE Access, 2022, 10: 43882-43894.
DOI URL |
[89] | ZHANG Y P, ZHANG H Z, LI D J, et al. Toward real-world panoramic image enhancement[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 2675-2684. |
[90] | LIU H Y, RUAN Z B, FANG C W, et al. A single frame and multi-frame joint network for 360-degree panorama video super-resolution[EB/OL]. [2022-12-01]. https://arxiv.org/abs/2008.10320. |
[91] | YOON Y, CHUNG I, WANG L, et al. SphereSR: 360° image super-resolution with arbitrary projection via continuous spherical image representation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5667-5676. |
[92] |
WANG M, LYU X Q, LI Y J, et al. VR content creation and exploration with deep learning: a survey[J]. Computational Visual Media, 2020, 6(1): 3-28.
DOI |
[93] | ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5967-5976. |
[94] | PARK T, LIU M Y, WANG T C, et al. Semantic image synthesis with spatially-adaptive normalization[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2332-2341. |
[1] | TANG Peng, SA Guo-dong, LIU Zhen-yu, TAN Jian-rong. Design of digital twin system for forging hydraulic press [J]. Journal of Graphics, 2023, 44(3): 609-615. |
[2] | ZHU Yong-ning , GE Ting , DU Sheng-yu , LOU Ze-ru , WANG Jian-min. A usability study of panoramic fluid painting system in immersive virtual environments [J]. Journal of Graphics, 2021, 42(5): 833-840. |
[3] | ZHAO Jian-jun, HUANG Jun-peng, CHEN Jun-liang . Human-computer interaction method in previz based on Leap Motion [J]. Journal of Graphics, 2021, 42(1): 71-78. |
[4] | ZHENG Ming-yu, LI Jia-he, ZHANG Han, LUO Yan-lin, SHEN Jia-li, ZHU Xiao-ming . Immersive physics learning environment with force feedback [J]. Journal of Graphics, 2021, 42(1): 79-86. |
[5] | TENG Jian, HUANG Jia-hui, GONG Kai . Design of virtual reality simulated driving teaching system based on BCI [J]. Journal of Graphics, 2020, 41(2): 217-223. |
[6] | QIU Yuan-hang1, SUN Xian-bo1, LIU Yong-di1, CAI Zheng-qing1, XU Hong-yong2 . Development and application of virtual reality software for the practical teaching of sewage treatment plant [J]. Journal of Graphics, 2020, 41(2): 233-236. |
[7] | LIN Ying-ying, CAI Rui-fan, ZHU Yu-zhen, TANG Xiang-jun, JIN Xiao-gang. Virtual reality pottery modeling system based on leap motion [J]. Journal of Graphics, 2020, 41(1): 57-65. |
[8] | LI Xiang1,2, WANG Xue-wen1,2, XIE Jia-cheng1,2, QIAO Chun-guang1,2 YANG Zhao-jian1,2 . Research on Key Technologies of Virtual Operation of Mining Equipment Under Complex Conditions [J]. Journal of Graphics, 2019, 40(2): 403-409. |
[9] | JIANG Lijun1,2, LI Jianyu1, LI Zhelin1,2, WU Zhanghong1, ZHANG Yu1. Experience Measurement of Three Navigation Interfaces in Virtual Riding [J]. Journal of Graphics, 2018, 39(3): 515-521. |
[10] | FENG Guizhen1, CHI Jianbin1, XING Haijun1, ZHANG Zengqiang1, JIA Shuang2. Reducer Virtual Disassembly and Assembly Experiment Based on Unity3D [J]. Journal of Graphics, 2018, 39(2): 304-308. |
[11] | SUN Hui, LV Jian, CUN Wenzhe. VR System Information Visualization Model Cognition [J]. Journal of Graphics, 2018, 39(2): 317-326. |
[12] | ZHU Xiaoqiang1,2, ZHOU Hao1,2, SONG Lei1,2. Tree Crown LOD Modeling Based on α-Shape [J]. Journal of Graphics, 2017, 38(3): 303-313. |
[13] | Liu Wei, Du Qiang, Zhang Shunxin, Zhang Jianjun. Mobile Learning System of Engineering Graphics Based on VR Technology [J]. Journal of Graphics, 2016, 37(6): 857-. |
[14] | Wang Xinxiang, Zhao Gang, Xiao Wenlei. Real-Time Simulation of Accident Effects in Virtual Flight Scene [J]. Journal of Graphics, 2016, 37(2): 243-248. |
[15] | Wang Xuewen, Qin Yi, Yang Xinyu, Pang Xinyu, Yang Zhaojian. Study on Virtual Assembly Simulation System of Coal Shearer [J]. Journal of Graphics, 2015, 36(2): 268-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||