Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 764-774.DOI: 10.11996/JG.j.2095-302X.2023040764
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
YUE Ming-yu1(), GAO Xi-feng2, BI Chong-ke1()
Received:
2022-11-24
Accepted:
2022-12-26
Online:
2023-08-31
Published:
2023-08-16
Contact:
BI Chong-ke (1982-), associate professor, Ph.D. His main research interests cover visualization and high performance computing. E-mail:About author:
YUE Ming-yu (1999-), master student. His main research interest covers 3D model processing. E-mail:yuemingyu@tju.edu.cn
Supported by:
CLC Number:
YUE Ming-yu, GAO Xi-feng, BI Chong-ke. 3D low-poly mesh generation for building models[J]. Journal of Graphics, 2023, 44(4): 764-774.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040764
Fig. 1 A high-poly mesh and simplified results generated by different methods ((a) The high-poly mesh with 10 081 triangles; (b) QEM with 402 triangles; (c) Simplygon with 402 triangles; (d) Our method with 290 triangles)
Fig. 2 An overview of our method ((a) The original model, also the reference mesh of the inverse rendering framework; (b) The base mesh of the inverse rendering framework, also the outer hull of the voxelized original model; (c) The mesh after being morphed; (d) The outer hull of the voxelized morphed model; (e) The mesh generated by alpha wrapping algorithm; (f) The simplified mesh)
Fig. 3 Comparison between different initial base meshes and the morphed results obtained from them ((a) The sphere mesh; (b) The mesh morphed from the sphere; (c) The outer hull of the voxelized mesh; (d) The mesh morphed from the outer hull)
Fig. 4 The result of the different values of ?? ((a) The outer hull of the voxelized morphed mesh; (b) The result with α=d/190 & δ=d/10000, and the genus is 8; (c) The result with α=d/200 & δ=d/10000, and the genus is 10; (d) The result with α=d/210 & δ=d/10000, and the genus is 10. d is the diagonal length of the bounding box of the mesh)
Fig. 5 The comparison between results, and the data under each mesh indicate the number of triangular facets, the simplification rate and the similarity error, respectively ((a) Input; (b) QEM; (c) PolyFit; (d) Simplygon reduction; (e) Simplygon remeshing; (f) Ours)
方法 | W(%) | M(%) | ravg | eavg | |
---|---|---|---|---|---|
输入 | 0 | 11.54 | 17557 | - | - |
QEM | 3.85 | 26.92 | 85 | 0.015 5 | 2805 |
PolyFit | 0 | 76.92 | 328 | 0.051 1 | 2024 |
Simplygon reduction | 0 | 0 | 701 | 0.039 8 | 764 |
Simplygon remeshing | 100 | 100 | 85 | 0.015 7 | 654 |
Ours | 100 | 100 | 85 | 0.015 7 | 485 |
Table 1 Statistics of results on the whole data set
方法 | W(%) | M(%) | ravg | eavg | |
---|---|---|---|---|---|
输入 | 0 | 11.54 | 17557 | - | - |
QEM | 3.85 | 26.92 | 85 | 0.015 5 | 2805 |
PolyFit | 0 | 76.92 | 328 | 0.051 1 | 2024 |
Simplygon reduction | 0 | 0 | 701 | 0.039 8 | 764 |
Simplygon remeshing | 100 | 100 | 85 | 0.015 7 | 654 |
Ours | 100 | 100 | 85 | 0.015 7 | 485 |
[1] | GARLAND M, HECKBERT P S. Surface simplification using quadric error metrics[C]// The 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1997: 209-216. |
[2] | Simplygon.com. Simplygon: the standard in 3D games content optimization[EB/OL]. [2022-05-20]. https://www.statscrop.com/www/simplygon.com. |
[3] | PORTANERI C, ROUXEL-LABBÉ M, HEMMER M, et al. Alpha wrapping with an offset[J]. ACM Transactions on Graphics, 2022, 41(4): 127. |
[4] | SCHROEDER W J. A topology modifying progressive decimation algorithm[C]// Proceedings of Visualization ’97. New York:IEEE Press, 2002: 205-212. |
[5] | LOW K L, TAN T S. Model simplification using vertex-clustering[C]// 1997 Symposium on Interactive 3D Graphics. New York: ACM, 1997: 75-82. |
[6] | LUEBKE D, ERIKSON C. View-dependent simplification of arbitrary polygonal environments[C]// The 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1997: 199-208. |
[7] |
LINDSTROM P, TURK G. Image-driven simplification[J]. ACM Transactions on Graphics, 2000, 19(3): 204-241.
DOI URL |
[8] | COHEN J, VARSHNEY A, MANOCHA D, et al. Simplification envelopes[C]// The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 119-128. |
[9] |
COHEN-STEINER D, ALLIEZ P, DESBRUN M. Variational shape approximation[J]. ACM Transactions on Graphics, 2004, 23(3): 905-914.
DOI URL |
[10] | MEHRA R, ZHOU Q N, LONG J, et al. Abstraction of man-made shapes[J]. ACM Transactions on Graphics, 2009, 28(5): 1-10. |
[11] | NAN L L, WONKA P. PolyFit: polygonal surface reconstruction from point clouds[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2372-2380. |
[12] | BAUCHET J P, LAFARGE F. Kinetic shape reconstruction[J]. ACM Transactions on Graphics, 2020, 39(5): 156. |
[13] | FANG H, LAFARGE F. Connect-and-slice: an hybrid approach for reconstructing 3D objects[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 13487-13495. |
[14] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[M]//Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 405-421. |
[15] | WANG P, LIU L J, LIU Y, et al. NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction[EB/OL]. [2022-05-20]. https://arxiv.org/abs/2106.10689. |
[16] | CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5939-5948. |
[17] | MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4455-4465. |
[18] | PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 165-174. |
[19] | LAINE S, HELLSTEN J, KARRAS T, et al. Modular primitives for high-performance differentiable rendering[J]. ACM Transactions on Graphics, 2020, 39(6): 1-14. |
[20] | HASSELGREN J, MUNKBERG J, LEHTINEN J, et al. Appearance-driven automatic 3D model simplification[EB/OL]. [2022-05-10]. https://arxiv.org/abs/2104.03989. |
[21] |
LUAN F J, ZHAO S, BALA K, et al. Unified shape and SVBRDF recovery using differentiable Monte Carlo rendering[J]. Computer Graphics Forum, 2021, 40(4): 101-113.
DOI URL |
[22] | NICOLET B, JACOBSON A, JAKOB W. Large steps in inverse rendering of geometry[J]. ACM Transactions on Graphics, 2021, 40(6): 248. |
[23] | ATTENE M, CAMPEN M, KOBBELT L. Polygon mesh repairing: an application perspective[J]. ACM Computing Surveys, 2013, 45(2): 15. |
[24] |
JU T. Robust repair of polygonal models[J]. ACM Transactions on Graphics, 2004, 23(3): 888-895.
DOI URL |
[25] |
NOORUDDIN F S, TURK G. Simplification and repair of polygonal models using volumetric techniques[J]. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(2): 191-205.
DOI URL |
[26] | HORNUNG A, KOBBELT L. Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information[C]// The 4th Eurographics Symposium on Geometry Processing. New York: ACM, 2006: 41-50. |
[27] | KAZHDAN M, HOPPE H. Screened poisson surface reconstruction[J]. ACM Transactions on Graphics, 2013, 32(3): 29. |
[28] | MURALI T M, FUNKHOUSER T A. Consistent solid and boundary representations from arbitrary polygonal data[C]// 1997 Symposium on Interactive 3D Graphics. New York: ACM, 1997: 155-162. |
[29] | HU Y X, ZHOU Q N, GAO X F, et al. Tetrahedral meshing in the wild[J]. ACM Transactions on Graphics, 2018, 37(4): 60. |
[30] |
ATTENE M. A lightweight approach to repairing digitized polygon meshes[J]. The Visual Computer, 2010, 26(11): 1393-1406.
DOI URL |
[31] |
ATTENE M. Direct repair of self-intersecting meshes[J]. Graphical Models, 2014, 76(6): 658-668.
DOI URL |
[32] | AKENINE-MÖLLER T. Fast 3D triangle-box overlap testing[J]. Journal of Graphics, GPU & Game Tools, 2001, 6(1): 29-33. |
[33] | ZHOU Q N, GRINSPUN E, ZORIN D, et al. Mesh arrangements for solid geometry[J]. ACM Transactions on Graphics, 2016, 35(4): 39. |
[34] | BOTSCH M. Polygon mesh processing[M]. Massachusetts: A K Peters, Ltd, 2010: 12. |
[35] | MeshLab. MeshLab[EB/OL]. [2022-05-20]. https://www.meshlab.net/. |
[36] |
CHEN D Y, TIAN X P, SHEN Y T, et al. On visual similarity based 3D model retrieval[J]. Computer Graphics Forum, 2003, 22(3): 223-232.
DOI URL |
[37] |
CORSINI M, CIGNONI P, SCOPIGNO R. Efficient and flexible sampling with blue noise properties of triangular meshes[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(6): 914-924.
DOI URL |
[38] | JIAO C Y, BI C K, YANG L, et al. ESRGAN-based visualization for large-scale volume data[J]. Journal of Visualization, 2022: 1-17. |
[39] |
LI M L. Feature-preserving 3D mesh simplification for urban buildings[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 135-150.
DOI URL |
[1] | ZHU Tian-xiao, YAN Feng-ting, SHI Zhi-cai. Regional hierarchical mesh simplification algorithm for feature retention [J]. Journal of Graphics, 2023, 44(3): 570-578. |
[2] | LUAN Wan-na, LIU Cheng-ming. A semi-regular mesh simplification algorithm based on inverse Loop subdivision [J]. Journal of Graphics, 2020, 41(6): 980-986. |
[3] | SU Peng1, YIN Meng-xiao1,2, WANG Yu-pan3, HAN Yan-ru1, YANG Feng1,2, LI Gui-qing3 . Spectral Pose Transfer Based on Deformation Graph [J]. Journal of Graphics, 2019, 40(2): 282-289. |
[4] | GUO Siyi, CHEN Yongfeng. Simplification Method of Information Modeling in the Building Project Operation and Maintenance Stage [J]. Journal of Graphics, 2018, 39(1): 123-128. |
[5] | WEI Ning, XU Tingting, GAO Kaiyuan, DONG Fangmin. Mesh Simplification Weighted by Voronoi Poles Feature Computed Saliency [J]. Journal of Graphics, 2017, 38(3): 314-319. |
[6] | Zhang Wei. Reconstruction of Triangle Mesh for Unorganized Point Cloud Data with Reconstruction of Triangle Mesh for Unorganized Point Cloud Data with [J]. Journal of Graphics, 2014, 35(2): 188-194. |
[7] | Yang Daguang, Hu Weiduo, Chang Bo, Wei Qing. Mesh Simplification based on Visual Feature Preserved [J]. Journal of Graphics, 2013, 34(4): 35-40. |
[8] | YAO Jian-qiang, HE Yuan-jun. Spherical Parameterization for Triangular Mesh Surface [J]. Journal of Graphics, 2010, 31(4): 77-80. |
[9] | LIU Xiao-ping, QIAN Jing-jing, YU Ye, LUO Yue-tong. Characteristic Building Modeling Based on Object-Oriented Template [J]. Journal of Graphics, 2010, 31(2): 68-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||