Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 775-783.DOI: 10.11996/JG.j.2095-302X.2023040775
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
CAI Yi-wu1(), ZHANG Yu-jia1, ZHANG Yong-fei1,2(
)
Received:
2022-11-30
Accepted:
2022-12-26
Online:
2023-08-31
Published:
2023-08-16
Contact:
ZHANG Yong-fei (1982-), professor, Ph.D. His main research interests cover computer vision, etc. E-mail:About author:
CAI Yi-wu (1999-), master student. His main research interest covers person re-identification. E-mail:caiyiwu@buaa.edu.cn
Supported by:
CLC Number:
CAI Yi-wu, ZHANG Yu-jia, ZHANG Yong-fei. Generation and selection of synthetic data for cross-domain person re-identification[J]. Journal of Graphics, 2023, 44(4): 775-783.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040775
Fig. 9 Person images before and after replacing the background of DukeMTMC-ReID ((a) Before replacing the background; (b) After replacing the background)
数据集 | 行人数量 (人) | 图像数量 (张) | 摄像机数量 (台) |
---|---|---|---|
Market1501 | 751 | 12936 | 6 |
MSMT17 | 1041 | 32621 | 15 |
SyRI | 100 | 56000 | 280 |
PersonX | 410 | 88560 | 6 |
RandPerson | 8000 | 132145 | 19 |
UnrealPerson | 3000 | 120000 | 34 |
UnrealForDuke (Ours) | 3000 | 120000 | 34 |
Table 1 The composition of train set
数据集 | 行人数量 (人) | 图像数量 (张) | 摄像机数量 (台) |
---|---|---|---|
Market1501 | 751 | 12936 | 6 |
MSMT17 | 1041 | 32621 | 15 |
SyRI | 100 | 56000 | 280 |
PersonX | 410 | 88560 | 6 |
RandPerson | 8000 | 132145 | 19 |
UnrealPerson | 3000 | 120000 | 34 |
UnrealForDuke (Ours) | 3000 | 120000 | 34 |
数据集 | 行人数量 (人) | 图像数量 (张) | 摄像机数量 (台) |
---|---|---|---|
Duke query | 702 | 2228 | 8 |
Duke gallery | 1110 | 17661 | 8 |
Table 2 The composition of test set
数据集 | 行人数量 (人) | 图像数量 (张) | 摄像机数量 (台) |
---|---|---|---|
Duke query | 702 | 2228 | 8 |
Duke gallery | 1110 | 17661 | 8 |
序号 | 训练数据集 | Rank-1 (%) | mAP (%) |
---|---|---|---|
1 | Market1501 (ICCV 2015) | 56.7 | 36.5 |
2 | MSMT17 (CVPR 2018) | 67.1 | 46.8 |
3 | SyRI (ECCV 2018) | 38.9 | 18.2 |
4 | PersonX (CVPR 2019) | 49.4 | 28.9 |
5 | RandPerson (MM 2020) | 59.4 | 38.4 |
6 | UnrealPerson (CVPR 2021) | 69.7 | 49.4 |
7 | UnrealForDuke (Ours) | 71.6 | 51.0 |
Table 3 Re-identification effects of direct transfering on real and virtual data
序号 | 训练数据集 | Rank-1 (%) | mAP (%) |
---|---|---|---|
1 | Market1501 (ICCV 2015) | 56.7 | 36.5 |
2 | MSMT17 (CVPR 2018) | 67.1 | 46.8 |
3 | SyRI (ECCV 2018) | 38.9 | 18.2 |
4 | PersonX (CVPR 2019) | 49.4 | 28.9 |
5 | RandPerson (MM 2020) | 59.4 | 38.4 |
6 | UnrealPerson (CVPR 2021) | 69.7 | 49.4 |
7 | UnrealForDuke (Ours) | 71.6 | 51.0 |
序号 | 随机 着装 | 目标域行 人着装颜 色分布 | 目标域行 人背景 风格 | Rank-1 (%) | mAP (%) |
---|---|---|---|---|---|
1 | √ | - | - | 50.2 | 28.5 |
2 | - | √ | - | 50.7 | 29.7 |
3 | - | √ | √ | 53.7 | 33.2 |
Table 4 Re-identification effects of direct transfering on virtual data with different conditions
序号 | 随机 着装 | 目标域行 人着装颜 色分布 | 目标域行 人背景 风格 | Rank-1 (%) | mAP (%) |
---|---|---|---|---|---|
1 | √ | - | - | 50.2 | 28.5 |
2 | - | √ | - | 50.7 | 29.7 |
3 | - | √ | √ | 53.7 | 33.2 |
序号 | 挑选方式 | Rank-1 (%) | mAP (%) |
---|---|---|---|
1 | Baseline | 80.8 | 70.9 |
2 | RandByPic | 80.5 | 71.1 |
3 | RandByPid | 81.2 | 71.6 |
4 | KNN | 81.3 | 71.7 |
5 | FID | 81.4 | 72.4 |
6 | WD | 82.0 | 71.5 |
Table 5 Re-identification effects of direct transfering on virtual data with different selection strategies
序号 | 挑选方式 | Rank-1 (%) | mAP (%) |
---|---|---|---|
1 | Baseline | 80.8 | 70.9 |
2 | RandByPic | 80.5 | 71.1 |
3 | RandByPid | 81.2 | 71.6 |
4 | KNN | 81.3 | 71.7 |
5 | FID | 81.4 | 72.4 |
6 | WD | 82.0 | 71.5 |
[1] | ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: past, present and future[EB/OL]. [2022-01-08]. https://arxiv.org/abs/1610.02984. |
[2] | ZHANG X, LUO H, FAN X, et al. AlignedReID: surpassing human-level performance in person re-identification[EB/OL]. [2022-01-08]. https://arxiv.org/abs/1711.08184. |
[3] | WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 79-88. |
[4] | BĄK S, CARR P, LALONDE J F. Domain adaptation through synthesis for unsupervised person re-identification[C]// Computer Vision - ECCV 2018: 15th European Conference, Part XIII. New York: ACM, 2018: 193-209. |
[5] | SUN X X, ZHENG L. Dissecting person re-identification from the viewpoint of viewpoint[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 608-617. |
[6] | WANG Y N, LIAO S C, SHAO L. Surpassing real-world source training data: random 3D characters for generalizable person re-identification[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3422-3430. |
[7] | ZHANG T Y, XIE L X, WEI L H, et al. UnrealPerson: an adaptive pipeline towards costless person re-identification[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11501-11510. |
[8] | CUI Y, SONG Y, SUN C, et al. Large scale fine-grained categorization and domain-specific transfer learning[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4109-4118. |
[9] | CHAKRABORTY S, UZKENT B, AYUSH K, et al. Efficient conditional pre-training for transfer learning[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2022: 4240-4249. |
[10] | YAN X, ACUNA D, FIDLER S. Neural data server: a large-scale search engine for transfer learning data[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3892-3901. |
[11] | LUO H, WANG P C, XU Y, et al. Self-supervised pre-training for transformer-based person re-identification[EB/OL]. [2021-12-08]. https://arxiv.org/abs/2111.12084. |
[12] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002. |
[13] | FU D P, CHEN D D, BAO J M, et al. Unsupervised pre-training for person re-identification[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14745-14754. |
[14] | DAI Y X, LIU J, SUN Y F, et al. IDM: an intermediate domain module for domain adaptive person re-ID[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 11844-11854. |
[15] |
HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100.
DOI URL |
[16] | SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited[J]. ACM Transactions on Database Systems, 2017, 42(3): 1-21. |
[17] | SHAMEEM M U S, FERDOUS R. An efficient k-means algorithm integrated with Jaccard distance measure for document clustering[C]// 2009 First Asian Himalayas International Conference on Internet. New York: IEEE Press, 2009: 1-6. |
[18] | SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1. |
[19] | ZHUANG Z J, WEI L H, XIE L X, et al. Rethinking the distribution gap of person re-identification with camera-based batch normalization[M]//Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 140-157. |
[20] | SOLOVEITCHIK M, DISKIN T, MORIN E, et al. Conditional frechet inception distance[EB/OL]. [2021-11-21]. https://arxiv.org/abs/2103.11521. |
[1] | FENG Zun-deng, WANG Hong-yuan, LIN Long, SUN Bo-yan, CHEN Hai-qin. Unsupervised person re-identification with multi-branch attention network and similarity learning strategy [J]. Journal of Graphics, 2023, 44(2): 280-290. |
[2] | SHAO Wen-bin, LIU Yu-jie, SUN Xiao-rui, LI Zong-min. Cross modality person re-identification based on residual enhanced attention [J]. Journal of Graphics, 2023, 44(1): 33-40. |
[3] | GENG Yuan, TAN Hong-chen, LI Jing-hua, WANG Li-chun . Visual information accumulation network for person re-identification [J]. Journal of Graphics, 2022, 43(6): 1193-1200. |
[4] | SUN Rui1,2, XIA Miao-miao1,2, LU Wei-ming1,2, ZHANG Xu-dong1,2. Joint enhanced local maximal occurrence representation and k-KISSME metric learning for person re-identification [J]. Journal of Graphics, 2020, 41(3): 362-371. |
[5] | HU Bin1,2, PAN Yu1, DING Weiping1, SHAO Yeqin3, YANG Cheng1 . Person Re-Identification Based on Transfer Learning [J]. Journal of Graphics, 2018, 39(5): 886-891. |
[6] | Shen Haosheng, Zhang Jundong, Zeng Hong. Design and Realization of a Virtual Simulation System for a Ship Engine Control Room [J]. Journal of Graphics, 2013, 34(4): 126-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||