Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 33-40.DOI: 10.11996/JG.j.2095-302X.2023010033
• Image Processing and Computer Vision • Previous Articles Next Articles
SHAO Wen-bin(), LIU Yu-jie(
), SUN Xiao-rui, LI Zong-min
Received:
2022-04-26
Revised:
2022-06-13
Online:
2023-10-31
Published:
2023-02-16
Contact:
LIU Yu-jie
About author:
SHAO Wen-bin (1998-), master student. His main research interests cover person re-identification, object detection. E-mail:wbShao@s.upc.edu.cn
Supported by:
CLC Number:
SHAO Wen-bin, LIU Yu-jie, SUN Xiao-rui, LI Zong-min. Cross modality person re-identification based on residual enhanced attention[J]. Journal of Graphics, 2023, 44(1): 33-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010033
方法 | 年份 | All-search (%) | Indoor-search (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Single-shot | Multi-shot | Single-shot | Multi-shot | ||||||||||||||
R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP | ||
HOG[ | 2005 | 2.76 | 18.30 | 31.90 | 4.24 | 3.82 | 22.80 | 37.60 | 2.16 | 3.22 | 24.70 | 44.50 | 7.25 | 4.75 | 29.20 | 49.40 | 3.51 |
LOMO[ | 2015 | 3.64 | 23.20 | 37.30 | 4.53 | 4.70 | 28.20 | 43.10 | 2.28 | 5.75 | 34.40 | 54.90 | 10.20 | 7.36 | 40.40 | 60.30 | 5.64 |
Zero-Padding[ | 2017 | 14.80 | 54.10 | 71.30 | 15.90 | 19.10 | 61.40 | 78.40 | 10.90 | 20.60 | 68.40 | 85.80 | 26.90 | 24.40 | 75.90 | 91.30 | 18.60 |
D-HSME[ | 2019 | 20.68 | 62.74 | 77.95 | 23.12 | - | - | - | - | - | - | - | - | - | - | - | - |
cmGAN[ | 2018 | 27.00 | 67.50 | 80.60 | 27.80 | 31.50 | 72.70 | 85.00 | 22.30 | 31.60 | 77.20 | 89.20 | 42.20 | 37.00 | 80.90 | 92.10 | 32.80 |
eBDTR[ | 2020 | 27.82 | 67.34 | 81.34 | 28.42 | - | - | - | - | - | - | - | - | - | - | - | - |
D2RL[ | 2019 | 28.90 | 70.60 | 82.40 | 29.20 | - | - | - | - | - | - | - | - | - | - | - | - |
JSIA-ReID[ | 2020 | 38.10 | 80.70 | 89.90 | 36.90 | 45.10 | 85.70 | 93.80 | 29.50 | 43.80 | 86.20 | 94.20 | 52.90 | 52.70 | 91.10 | 96.40 | 42.70 |
AlignGAN[ | 2019 | 42.40 | 85.00 | 93.70 | 40.70 | 51.50 | 89.40 | 95.70 | 33.90 | 45.90 | 87.60 | 94.40 | 54.30 | 57.10 | 92.70 | 97.40 | 45.30 |
X modality[ | 2020 | 49.92 | 89.79 | 95.96 | 50.73 | - | - | - | - | - | - | - | - | - | - | - | - |
MACE[ | 2020 | 51.64 | 87.25 | 94.44 | 50.11 | - | - | - | - | 57.35 | 93.02 | 97.47 | 64.79 | - | - | - | - |
DDAG[ | 2020 | 54.75 | 90.39 | 95.81 | 53.02 | - | - | - | - | 61.02 | 94.06 | 98.41 | 67.98 | - | - | - | - |
SIM[ | 2020 | 56.93 | - | - | 60.88 | - | - | - | - | - | - | - | - | - | - | - | - |
NFS[ | 2021 | 56.91 | 91.34 | 96.52 | 55.45 | 63.51 | 94.42 | 97.81 | 48.56 | 62.79 | 96.53 | 99.07 | 69.79 | 70.03 | 97.70 | 99.51 | 61.45 |
CICL[ | 2021 | 57.20 | 94.30 | 98.40 | 59.30 | 60.70 | 95.20 | 98.60 | 52.60 | 66.60 | 98.80 | 99.70 | 74.70 | 73.80 | 99.40 | 99.90 | 68.30 |
cm-SSFT[ | 2020 | 61.60 | 89.20 | 93.90 | 63.20 | 63.40 | 91.20 | 95.70 | 62.00 | 70.50 | 94.90 | 97.70 | 72.60 | 73.00 | 96.30 | 99.10 | 72.40 |
CANet[ | 2021 | 69.88 | 95.71 | 98.46 | 66.89 | - | - | - | - | 76.26 | 97.88 | 99.49 | 80.37 | - | - | - | - |
本文方法 | 2022 | 68.53 | 95.80 | 97.87 | 66.27 | 66.81 | 95.63 | 98.17 | 62.80 | 74.65 | 97.02 | 99.21 | 79.33 | 78.91 | 97.53 | 99.14 | 75.27 |
Table 1 Comparison with the state-of-the-art methods on the SYSU-MM01 dataset
方法 | 年份 | All-search (%) | Indoor-search (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Single-shot | Multi-shot | Single-shot | Multi-shot | ||||||||||||||
R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP | R-1 | R-10 | R-20 | mAP | ||
HOG[ | 2005 | 2.76 | 18.30 | 31.90 | 4.24 | 3.82 | 22.80 | 37.60 | 2.16 | 3.22 | 24.70 | 44.50 | 7.25 | 4.75 | 29.20 | 49.40 | 3.51 |
LOMO[ | 2015 | 3.64 | 23.20 | 37.30 | 4.53 | 4.70 | 28.20 | 43.10 | 2.28 | 5.75 | 34.40 | 54.90 | 10.20 | 7.36 | 40.40 | 60.30 | 5.64 |
Zero-Padding[ | 2017 | 14.80 | 54.10 | 71.30 | 15.90 | 19.10 | 61.40 | 78.40 | 10.90 | 20.60 | 68.40 | 85.80 | 26.90 | 24.40 | 75.90 | 91.30 | 18.60 |
D-HSME[ | 2019 | 20.68 | 62.74 | 77.95 | 23.12 | - | - | - | - | - | - | - | - | - | - | - | - |
cmGAN[ | 2018 | 27.00 | 67.50 | 80.60 | 27.80 | 31.50 | 72.70 | 85.00 | 22.30 | 31.60 | 77.20 | 89.20 | 42.20 | 37.00 | 80.90 | 92.10 | 32.80 |
eBDTR[ | 2020 | 27.82 | 67.34 | 81.34 | 28.42 | - | - | - | - | - | - | - | - | - | - | - | - |
D2RL[ | 2019 | 28.90 | 70.60 | 82.40 | 29.20 | - | - | - | - | - | - | - | - | - | - | - | - |
JSIA-ReID[ | 2020 | 38.10 | 80.70 | 89.90 | 36.90 | 45.10 | 85.70 | 93.80 | 29.50 | 43.80 | 86.20 | 94.20 | 52.90 | 52.70 | 91.10 | 96.40 | 42.70 |
AlignGAN[ | 2019 | 42.40 | 85.00 | 93.70 | 40.70 | 51.50 | 89.40 | 95.70 | 33.90 | 45.90 | 87.60 | 94.40 | 54.30 | 57.10 | 92.70 | 97.40 | 45.30 |
X modality[ | 2020 | 49.92 | 89.79 | 95.96 | 50.73 | - | - | - | - | - | - | - | - | - | - | - | - |
MACE[ | 2020 | 51.64 | 87.25 | 94.44 | 50.11 | - | - | - | - | 57.35 | 93.02 | 97.47 | 64.79 | - | - | - | - |
DDAG[ | 2020 | 54.75 | 90.39 | 95.81 | 53.02 | - | - | - | - | 61.02 | 94.06 | 98.41 | 67.98 | - | - | - | - |
SIM[ | 2020 | 56.93 | - | - | 60.88 | - | - | - | - | - | - | - | - | - | - | - | - |
NFS[ | 2021 | 56.91 | 91.34 | 96.52 | 55.45 | 63.51 | 94.42 | 97.81 | 48.56 | 62.79 | 96.53 | 99.07 | 69.79 | 70.03 | 97.70 | 99.51 | 61.45 |
CICL[ | 2021 | 57.20 | 94.30 | 98.40 | 59.30 | 60.70 | 95.20 | 98.60 | 52.60 | 66.60 | 98.80 | 99.70 | 74.70 | 73.80 | 99.40 | 99.90 | 68.30 |
cm-SSFT[ | 2020 | 61.60 | 89.20 | 93.90 | 63.20 | 63.40 | 91.20 | 95.70 | 62.00 | 70.50 | 94.90 | 97.70 | 72.60 | 73.00 | 96.30 | 99.10 | 72.40 |
CANet[ | 2021 | 69.88 | 95.71 | 98.46 | 66.89 | - | - | - | - | 76.26 | 97.88 | 99.49 | 80.37 | - | - | - | - |
本文方法 | 2022 | 68.53 | 95.80 | 97.87 | 66.27 | 66.81 | 95.63 | 98.17 | 62.80 | 74.65 | 97.02 | 99.21 | 79.33 | 78.91 | 97.53 | 99.14 | 75.27 |
方法 | Single-shot and All-search | |
---|---|---|
Rank-1 | mAP | |
Baseline | 58.17 | 56.69 |
Raw-SpaceAttention | 65.67 | 62.50 |
Raw-ChannelAttention | 63.43 | 62.41 |
Raw-DuanlAttention | 69.53 | 67.52 |
Residual-SpaceAttention | 68.34 | 66.57 |
Residual-ChannelAttention | 67.80 | 66.23 |
Residual-DuanlAttention | 68.53 | 66.27 |
Table 3 Ablation study of residual enhanced attention on SYSU-MM01 (%)
方法 | Single-shot and All-search | |
---|---|---|
Rank-1 | mAP | |
Baseline | 58.17 | 56.69 |
Raw-SpaceAttention | 65.67 | 62.50 |
Raw-ChannelAttention | 63.43 | 62.41 |
Raw-DuanlAttention | 69.53 | 67.52 |
Residual-SpaceAttention | 68.34 | 66.57 |
Residual-ChannelAttention | 67.80 | 66.23 |
Residual-DuanlAttention | 68.53 | 66.27 |
方法 | Single-shot and All-search | |
---|---|---|
Rank-1 | mAP | |
参数共享的单流网络 | 54.33 | 51.19 |
参数完全独立的双流网络 | 19.50 | 44.70 |
本文的网络结构 | 58.17 | 56.69 |
Table 4 Ablation study of network structure on SYSU-MM01 (%)
方法 | Single-shot and All-search | |
---|---|---|
Rank-1 | mAP | |
参数共享的单流网络 | 54.33 | 51.19 |
参数完全独立的双流网络 | 19.50 | 44.70 |
本文的网络结构 | 58.17 | 56.69 |
[1] |
YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893.
DOI URL |
[2] | 杨文娟, 王文明, 王全玉, 等. 基于感知哈希和视觉词袋模型的图像检索方法[J]. 图学学报, 2019, 40(3): 519-524. |
YANG W J, WANG W M, WANG Q Y, et al. Image retrieval method based on perceptual hash algorithm and bag of visual words[J]. Journal of Graphics, 2019, 40(3): 519-524 (in Chinese). | |
[3] | ZHAO H, TIAN M, SUN S, et al. Spindle net: person re-identification with human body region guided feature decomposition and fusion[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1077-1085. |
[4] | GE Y X, ZHU F, CHEN D P, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object re-id[EB/OL]. [2021-12-08]. https://blog.csdn.net/NGUever15/article/details/120556059. |
[5] | CHEN H, WANG Y, LAGADEC B. Joint generative and contrastive learning for unsupervised person re-identification[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2004-2013. |
[6] | WU A, ZHENG W, YU H, et al. RGB-infrared cross-modality person re-identification[C]//2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 5380-5389. |
[7] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// The IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[8] | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]// 2018 European Conference on Computer Vision. Cham: Springer International Publishin, 2018: 3-19. |
[9] | DAI P Y, JI R R, WANG H, WU Q, el al. Cross-modality person re-identification with generative adversarial training[EB/OL]. [2021-12-08]. https://www.ijcai.org/Proceedings/2018/0094.pdf. |
[10] | WANG Z X, WANG Z, ZHENG Y. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 618-626. |
[11] | WANG G, ZHANG T, CHENG J, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 3623-3632. |
[12] | ZHAO Z, LIU B, CHU Q, et al. Joint color-irrelevant consistency learning and identity-aware modality adaptation for visible-infrared cross modality person re-identification[C]// The AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3520-3528. |
[13] | YE M, LAN X, WANG Z, et al. Bi-directional center- constrained top-ranking for visible thermal person re-identification[C]//IEEE Transactions on Information Pernsics and Security. New York: IEEE Press, 2020: 407-419. |
[14] | HAO Y, WANG N, LI J, el al. Hsme: hypersphere manifold embedding for visible thermal person re-identification[C]//The AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 8385-8392. |
[15] | JIA M X, ZHAI Y P, LU S J, et al. A similarity inference metric for RGB-infrared cross-modality person re-identification[EB/OL]. [2021-12-08]. https://arxiv.org/abs/2007.01504 |
[16] | LI D, WEI X, HONG X, el al. Infrared-visible cross-modal person re-identification with an x modality[C]//The AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 4610-4617. |
[17] | YE M, SHEN J, CRANDALL D, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]//2020 European Conference on Computer Vision - ECCV 2020. Cham: Springer International Publishin, 2020: 229-247. |
[18] | CHEN Y, WAN L, LI Z, et al. Neural feature search for rgb-infrared person re-identification[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New York: IEEE Press, 2021: 587-597. |
[19] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[EB/OL]. [2021-12-08]. https://blog.csdn.net/toda666/article/details/80384915. |
[20] | LUO H, GU Y, LIAO X, et al. Bag of tricks and a strong baseline for deep person re-identification[EB/OL]. [2021-12-08]. https://openaccess.thecvf.com/content_CVPRW_2019/papers/TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_Deep_Person_CVPRW_2019_paper.pdf. |
[21] | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2005: 886-893. |
[22] | NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors: Basel, Switzerland, 2017, 17(3): E605. |
[23] | WANG G, ZHANG T, YANG Y, et al. Cross-modality paired-images generation for RGB-infrared person re-identification[C]// The AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12144-12151. |
[24] | DENG J, DONG W, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 248-255. |
[25] | KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. [2021-12-08]. https://arxiv.org/abs/1412.6980. |
[26] | YE M, LAN X, LENG Q, et al. Cross-modality person re-identification via modality-aware collaborative ensemble learning[C]// 2020 IEEE Transactions on Image Processing. New York: IEEE Press, 2020: 9387-9399. |
[27] | LU Y, WU Y, LIU B, et al. Cross-modality person re-identification with shared-specific feature transfer[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 13376-13386. |
[28] | YE M, RUAN W J, DU B, et al. Channel augmented joint learning for visible-infrared recognition[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 13567-13576. |
[29] |
SELVARAJU R, COGSWELL M, DAS A. Grad-cam: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
DOI |
[1] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[2] | JIANG Wu-jun, ZHI Li-jia, ZHANG Shao-min, ZHOU Tao. CT image segmentation of lung nodules based on channel residual nested U structure [J]. Journal of Graphics, 2023, 44(5): 879-889. |
[3] | SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu. Tunnel fire detection based on improved student-teacher network [J]. Journal of Graphics, 2023, 44(5): 978-987. |
[4] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[5] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[6] | LI Xin, PU Yuan-yuan, ZHAO Zheng-peng, XU Dan, QIAN Wen-hua. Content semantics and style features match consistent artistic style transfer [J]. Journal of Graphics, 2023, 44(4): 699-709. |
[7] | DENG Wei-ming, YANG Tie-jun, LI Chun-chun, HUANG Lin. Object detection for nameplate based on neural architecture search [J]. Journal of Graphics, 2023, 44(4): 718-727. |
[8] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[9] | CAI Yi-wu, ZHANG Yu-jia, ZHANG Yong-fei. Generation and selection of synthetic data for cross-domain person re-identification [J]. Journal of Graphics, 2023, 44(4): 775-783. |
[10] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[11] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[12] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[13] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. |
[14] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. |
[15] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||