Journal of Graphics ›› 2023, Vol. 44 ›› Issue (5): 849-860.DOI: 10.11996/JG.j.2095-302X.2023050849
• Image Processing and Computer Vision • Previous Articles Next Articles
YAN Guang-wei(), LIU Run-ze, JIAO Run-hai(
), HE Hui
Received:
2022-12-30
Accepted:
2023-05-15
Online:
2023-10-31
Published:
2023-10-31
Contact:
JIAO Run-hai (1977-), professor, Ph.D. His main research interests cover image recognition, machine learning and data mining. E-mail:About author:
YAN Guang-wei (1971-), associate professor, Ph.D. His main research interests cover computer graphics, image and information security. E-mail:yan_guang_wei@126.com
Supported by:
CLC Number:
YAN Guang-wei, LIU Run-ze, JIAO Run-hai, HE Hui. Detection method of dropped anti-vibration hammer for transmission line based on improved Cascade RCNN[J]. Journal of Graphics, 2023, 44(5): 849-860.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023050849
真实情况 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | TP (真正例) | FN (假负例) |
反例 | FP (假正例) | TN (真负例) |
Table 1 Confusion matrix
真实情况 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | TP (真正例) | FN (假负例) |
反例 | FP (假正例) | TN (真负例) |
Model | Backbone | Contrastive loss | Classifier enhancement | Parallel attention | AP (%) | Time | |
---|---|---|---|---|---|---|---|
Train (h) | Test (s) | ||||||
SSD | VGG-16 | × | × | × | 75.3 | 5.1 | 0.160 |
YOLOv4[ | Darknet-53 | × | × | × | 80.7 | 6.4 | 0.165 |
YOLOv5[ | CSPDarknet53+Focus | × | × | × | 86.3 | 7.5 | 0.113 |
Faster RCNN[ | ResNet-101 | × | × | × | 83.0 | 13.7 | 0.165 |
Cascade RCNN[ | ResNet-101 | × | × | × | 84.0 | 10.0 | 0.160 |
Cfce-Pa-Net1 | ResNet-101 | √ | × | × | 89.1 | 15.3 | 0.169 |
Cfce-Pa-Net2 | ResNet-101 | √ | √ | × | 90.3 | 17.3 | 0.169 |
Cfce-Pa-Net3 | ResNet-101 | √ | √ | √ | 92.0 | 20.1 | 0.171 |
Cfce-Pa-Net3 | ResNet-50 | √ | √ | √ | 91.8 | 19.3 | 0.168 |
Table 2 Comparison between the model proposed in this paper and other models
Model | Backbone | Contrastive loss | Classifier enhancement | Parallel attention | AP (%) | Time | |
---|---|---|---|---|---|---|---|
Train (h) | Test (s) | ||||||
SSD | VGG-16 | × | × | × | 75.3 | 5.1 | 0.160 |
YOLOv4[ | Darknet-53 | × | × | × | 80.7 | 6.4 | 0.165 |
YOLOv5[ | CSPDarknet53+Focus | × | × | × | 86.3 | 7.5 | 0.113 |
Faster RCNN[ | ResNet-101 | × | × | × | 83.0 | 13.7 | 0.165 |
Cascade RCNN[ | ResNet-101 | × | × | × | 84.0 | 10.0 | 0.160 |
Cfce-Pa-Net1 | ResNet-101 | √ | × | × | 89.1 | 15.3 | 0.169 |
Cfce-Pa-Net2 | ResNet-101 | √ | √ | × | 90.3 | 17.3 | 0.169 |
Cfce-Pa-Net3 | ResNet-101 | √ | √ | √ | 92.0 | 20.1 | 0.171 |
Cfce-Pa-Net3 | ResNet-50 | √ | √ | √ | 91.8 | 19.3 | 0.168 |
相似度计算方式 | AP | Precision | Recall |
---|---|---|---|
欧式距离 | 89.1 | 78.7 | 95.0 |
余弦相似度 | 88.2 | 48.2 | 94.9 |
点积相似度 | 88.3 | 69.1 | 93.5 |
Table 3 Comparing the impact of different similarity calculation methods on networks (%)
相似度计算方式 | AP | Precision | Recall |
---|---|---|---|
欧式距离 | 89.1 | 78.7 | 95.0 |
余弦相似度 | 88.2 | 48.2 | 94.9 |
点积相似度 | 88.3 | 69.1 | 93.5 |
Fig. 8 Characteristic thermal map ((a) Original image; (b) The feature heat map extracted by the network before improvement; (c) Improved network extracted feature thermal maps)
方法 | 阈值β | AP (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
不加入分支 | - | 89.1 | 78.7 | 95.0 |
加入分支 | 0.80 | 80.7 | 66.0 | 88.7 |
0.85 | 84.1 | 62.9 | 90.1 | |
0.90 | 87.0 | 57.4 | 93.7 | |
0.95 | 90.3 | 89.0 | 95.9 | |
0.96 | 90.1 | 85.8 | 96.3 | |
0.97 | 90.1 | 80.8 | 96.2 |
Table 4 Different thresholds β experimental results
方法 | 阈值β | AP (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
不加入分支 | - | 89.1 | 78.7 | 95.0 |
加入分支 | 0.80 | 80.7 | 66.0 | 88.7 |
0.85 | 84.1 | 62.9 | 90.1 | |
0.90 | 87.0 | 57.4 | 93.7 | |
0.95 | 90.3 | 89.0 | 95.9 | |
0.96 | 90.1 | 85.8 | 96.3 | |
0.97 | 90.1 | 80.8 | 96.2 |
方法 | Recall | Precision | AP |
---|---|---|---|
Cascade RCNN[ | 95.9 | 89.0 | 90.3 |
Cascade RCNN[ | 95.7 | 80.8 | 90.4 |
Cascade RCNN[ | 95.9 | 85.8 | 90.6 |
Cascade RCNN[ | 97.5 | 91.0 | 92.0 |
Table 5 Comparison table of ablation experiment effects (%)
方法 | Recall | Precision | AP |
---|---|---|---|
Cascade RCNN[ | 95.9 | 89.0 | 90.3 |
Cascade RCNN[ | 95.7 | 80.8 | 90.4 |
Cascade RCNN[ | 95.9 | 85.8 | 90.6 |
Cascade RCNN[ | 97.5 | 91.0 | 92.0 |
上采样方式 | Recall | Precision | AP |
---|---|---|---|
反卷积 | 97.5 | 91.0 | 92.0 |
双线性插值 | 97.0 | 88.6 | 91.3 |
Table 6 Comparative experiment of deconvolution and bilinear interpolation methods (%)
上采样方式 | Recall | Precision | AP |
---|---|---|---|
反卷积 | 97.5 | 91.0 | 92.0 |
双线性插值 | 97.0 | 88.6 | 91.3 |
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 90.1 | 62.9 | 84.1 |
2 | 90.8 | 60.1 | 83.7 |
3 | 90.2 | 66.2 | 84.3 |
4 | 92.8 | 57.5 | 83.9 |
5 | 89.0 | 66.3 | 84.2 |
Table 7 Baseline network cross validation experimental results (%)
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 90.1 | 62.9 | 84.1 |
2 | 90.8 | 60.1 | 83.7 |
3 | 90.2 | 66.2 | 84.3 |
4 | 92.8 | 57.5 | 83.9 |
5 | 89.0 | 66.3 | 84.2 |
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 95.6 | 75.4 | 88.9 |
2 | 96.2 | 82.7 | 89.2 |
3 | 92.3 | 80.2 | 88.8 |
4 | 93.2 | 85.6 | 89.2 |
5 | 97.6 | 69.5 | 89.3 |
Table 8 Contrastive learning network cross validation experimental results (%)
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 95.6 | 75.4 | 88.9 |
2 | 96.2 | 82.7 | 89.2 |
3 | 92.3 | 80.2 | 88.8 |
4 | 93.2 | 85.6 | 89.2 |
5 | 97.6 | 69.5 | 89.3 |
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 95.1 | 89.2 | 90.3 |
2 | 96.2 | 89.9 | 90.4 |
3 | 96.3 | 85.8 | 90.1 |
4 | 96.2 | 90.0 | 90.5 |
5 | 95.6 | 90.0 | 90.1 |
Table 9 Experimental results of classifier enhancement cross validation (%)
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 95.1 | 89.2 | 90.3 |
2 | 96.2 | 89.9 | 90.4 |
3 | 96.3 | 85.8 | 90.1 |
4 | 96.2 | 90.0 | 90.5 |
5 | 95.6 | 90.0 | 90.1 |
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 95.6 | 90.4 | 91.9 |
2 | 98.6 | 88.4 | 92.1 |
3 | 98.1 | 92.0 | 91.8 |
4 | 97.0 | 92.8 | 92.1 |
5 | 98.3 | 91.5 | 91.9 |
Table 10 Experimental results of parallel attention cross validation (%)
测试集 | Recall | Precision | AP |
---|---|---|---|
1 | 95.6 | 90.4 | 91.9 |
2 | 98.6 | 88.4 | 92.1 |
3 | 98.1 | 92.0 | 91.8 |
4 | 97.0 | 92.8 | 92.1 |
5 | 98.3 | 91.5 | 91.9 |
方法 | AP | Precision | Recall |
---|---|---|---|
Cascade RCNN[ | 85.4 | 50.9 | 88.6 |
Cfce-Pa-Net1 | 87.7 | 59.7 | 91.9 |
Cfce-Pa-Net2 | 89.2 | 81.2 | 91.3 |
Cfce-Pa-Net3 | 89.6 | 81.4 | 91.1 |
Table 11 Experimental results of insulator self explosion dataset (%)
方法 | AP | Precision | Recall |
---|---|---|---|
Cascade RCNN[ | 85.4 | 50.9 | 88.6 |
Cfce-Pa-Net1 | 87.7 | 59.7 | 91.9 |
Cfce-Pa-Net2 | 89.2 | 81.2 | 91.3 |
Cfce-Pa-Net3 | 89.6 | 81.4 | 91.1 |
[1] | 东辉, 陈鑫凯, 孙浩, 等. 基于改进YOLOv4和图像处理的蔬菜田杂草检测[J]. 图学学报, 2022, 43(4): 559-569. |
DONG H, CHEN X K, SUN H, et al. Weed detection in vegetable field based on improved YOLOv4 and image processing[J]. Journal of Graphics, 2022, 43(4): 559-569. (in Chinese) | |
[2] | 张运波, 易鹏飞, 周东生, 等. 深度可分离卷积和标准卷积相结合的高效行人检测器[J]. 图学学报, 2022, 43(2): 230-238. |
ZHANG Y B, YI P F, ZHOU D S, et al. Efficient pedestrian detector combining depthwise separable convolution and standard convolution[J]. Journal of Graphics, 2022, 43(2): 230-238. (in Chinese) | |
[3] | 胡俊, 顾晶晶, 王秋红. 基于遥感图像的多模态小目标检测[J]. 图学学报, 2022, 43(2): 197-204. |
HU J, GU J J, WANG Q H. Multimodal small target detection based on remote sensing image[J]. Journal of Graphics, 2022, 43(2): 197-204. (in Chinese)
DOI |
|
[4] | 陈晓娟, 吴英石, 赵亮. 基于随机Hough变换的OPGW防震锤识别[J]. 黑龙江电力, 2010, 32(1): 1-2, 5. |
CHEN X J, WU Y S, ZHAO L. Identification of OPGW vibration damper based on random Hough transformation[J]. Heilongjiang Electric Power, 2010, 32(1): 1-2, 5. (in Chinese) | |
[5] | 谭磊, 王耀南, 沈春生. 输电线路除冰机器人障碍视觉检测识别算法[J]. 仪器仪表学报, 2011, 32(11): 2564-2571. |
TAN L, WANG Y N, SHEN C S. Visual detection and recognition algorithm for obstacles of power transmission line deicing robot[J]. Journal of Instrumentation, 2011, 32(11): 2564-2571. (in Chinese) | |
[6] | 金立军, 闫书佳, 刘源. 基于类Haar特征与级联AdaBoost算法的防震锤识别[J]. 系统仿真学报, 2012, 24(9): 1806-1809. |
JIN L J, YAN S J, LIU Y. Vibration damper recognition based on haar-like features and cascade AdaBoost classifier[J]. Journal of System Simulation, 2012, 24(9): 1806-1809. (in Chinese) | |
[7] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[8] | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[9] | BOCHKOVSKIY A, WANG C Y, LIAO H-Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-11-18]. https://arxiv.org/abs/2004.10934. |
[10] | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 2778-2788. |
[11] |
张家盛, 梁进兴. 基于深度学习的无人机巡检架空输电线路金具锈蚀缺陷检测方法[J]. 湖南电力, 2022, 42(5): 75-78.
DOI |
ZHANG J S, LIANG J X. Detection method of metal fitting rust defects for overhead transmission lines based on UAV patrol of deep learning[J]. Hunan Electric Power, 2022, 42(5): 75-78. (in Chinese)
DOI |
|
[12] | 许扬, 凌德泉, 严锋, 等. 基于EfficientDet的输电线路破损防振锤检测[J]. 电子设计工程, 2022, 30(9): 139-143. |
XU Y, LING D Q, YAN F, et al. EfficientDet-based detection of damaged vibration damper in transmission line[J]. Electronic Design Engineering, 2022, 30(9): 139-143. (in Chinese) | |
[13] | 安金鹏, 王晓春. 基于深度学习和视觉语义关系的防振锤滑移目标检测[J]. 智能计算机与应用, 2022, 12(9): 183-188. |
AN J P, WANG X C. Target detection of vibration damper movement based on deep learning and visual semantic relations[J]. Intelligent Computer and Applications, 2022, 12(9): 183-188. (in Chinese) | |
[14] |
贾雁飞, 陈广大, 杨淼, 等. 基于深度学习的高压输电线路防振锤检测[J]. 机床与液压, 2022, 50(13): 21-25.
DOI |
JIA Y F, CHEN G D, YANG M, et al. Damper detection of high voltage transmission line based on deep learning[J]. Machine Tool & Hydraulics, 2022, 50(13): 21-25. (in Chinese) | |
[15] | CAI D L, ZHANG Z Y, HE G F. A study on the effectiveness of detection of unbalanced datasets based on faster R-CNN[C]// The 12th International Conference on Power, Energy and Electrical Engineering. New York: IEEE Press, 2022: 321-326. |
[16] |
LI Y F, DAI L G, NI H X, et al. Focus on local: transmission line defect detection via feature refinement[J]. Signal, Image and Video Processing, 2023, 17: 31-37.
DOI |
[17] | 张永翔, 吴功平, 刘中云, 等. 基于YOLOv3网络的输电线路防震锤和线夹检测迁移学习[J]. 计算机应用, 2020, 40(S2): 188-194. |
ZHANG Y X, WU G P, LIU Z Y, et al. Transfer learning of transmission line damper and clamp detection based on YOLOv3 network[J]. Journal of Computer Applications, 2020, 40(S2): 188-194. (in Chinese) | |
[18] | 刘又维, 樊绍胜, 唐立军, 等. 基于关键点的输电线路防振锤滑移视觉检测[J]. 激光与光电子学进展, 2020, 57(20): 279-285. |
LIU Y W, FAN S S, TANG L J, et al. Visual detection of transmission line anti-vibration hammer slip based on key points[J]. Laser & Optoelectronics Progress, 2020, 57(20): 279-285. (in Chinese) | |
[19] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 1314-1324. |
[20] | 罗玉鹤, 庞红旗, 高飞翎, 等. 电力巡检图像中防振锤的区域全卷积网络识别方法[J]. 福州大学学报: 自然科学版, 2020, 48(6): 714-719. |
LUO Y H, PANG H Q, GAO F L, et al. Identification method of region based fully convolution networks for damper in power inspection image[J]. Journal of Fuzhou University: Natural Science Edition, 2020, 48(6): 714-719. (in Chinese) | |
[21] | 缪希仁, 刘欣宇, 江灏, 等. 一种基于深度学习和距离约束的航拍图像防震锤滑移故障诊断方法: CN108596883A[P]. 2021-07-13. |
MIAO X R, LIU X Y, JIANG H, et al. Deep learning and distance constraint-based aerial image vibration damper slippage fault diagnosis method: CN108596883A[P]. 2021-07-13. (in Chinese) | |
[22] |
NI H X, WANG M Z, ZHAO L Y. An improved Faster R-CNN for defect recognition of key components of transmission line[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4679-4695.
DOI PMID |
[23] | ZHANG Z, JIANG W, YANG J J. An improved quantization algorithm for electric power inspection[C]// The 9th International Electrical Engineering Congress. New York: IEEE Press, 2021: 397-400. |
[24] |
SUN X D, HAO H, LIU Y, et al. Research on the application of YOLOv4 in power inspection[J]. IOP Conference Series: Earth and Environmental Science, 2021, 693(1): 12038.
DOI |
[25] | CHEN T, KORNBLITH S, SWERSKY K, et al. Big self-supervised models are strong semi-supervised learners[EB/OL]. [2022-12-29]. ttps://arxiv.org/abs/2006.10029v2. |
[1] | ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion [J]. Journal of Graphics, 2023, 44(5): 918-927. |
[2] | HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5 [J]. Journal of Graphics, 2023, 44(4): 667-676. |
[3] | ZHANG Xinchun, CAO Yingping, HAN Chunyu, BAI Yuncan. On the Surface Damage Features of Transmission Line Conductors Based on Image Processing [J]. Journal of Graphics, 2018, 39(3): 440-447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||