Journal of Graphics ›› 2023, Vol. 44 ›› Issue (5): 918-927.DOI: 10.11996/JG.j.2095-302X.2023050918
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHAI Yong-jie1(), GUO Cong-bin1, WANG Qian-ming1, ZHAO Kuan1, BAI Yun-shan1, ZHANG Ji2()
Received:
2023-04-24
Accepted:
2023-08-25
Online:
2023-10-31
Published:
2023-10-31
Contact:
ZHANG Ji (1972-), associate professor, Ph.D. His main research interests cover computer vision, image processing and information fusion. E-mail:About author:
ZHAI Yong-jie (1972-), professor, Ph.D. His main research interests cover pattern recognition and digital image processing. E-mail:zhaiyongjie@ncepu.edu.cn
Supported by:
CLC Number:
ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion[J]. Journal of Graphics, 2023, 44(5): 918-927.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023050918
Fig. 1 Example diagrams of fitting combination structure ((a) Bag-type fixed structure; (b) Grading-shielded structure; (c) Insulator connection structure; (d) Compression-type fixed connection structure)
基线模型 | 隐含空间知识融合 | 改进后处理 | AP50 | AP75 |
---|---|---|---|---|
√ | - | - | 77.5 | 41.9 |
√ | √ | - | 81.0 | 44.9 |
√ | - | √ | 78.2 | 45.0 |
√ | √ | √ | 81.0 | 47.6 |
Table 1 The ablation experimental result of the model structure (%)
基线模型 | 隐含空间知识融合 | 改进后处理 | AP50 | AP75 |
---|---|---|---|---|
√ | - | - | 77.5 | 41.9 |
√ | √ | - | 81.0 | 44.9 |
√ | - | √ | 78.2 | 45.0 |
√ | √ | √ | 81.0 | 47.6 |
α | AP50-95 | AP50 | AP75 | AR1 | AR10 | AR100 |
---|---|---|---|---|---|---|
0.10 | 45.4 | 80.1 | 45.7 | 26.5 | 56.0 | 59.1 |
0.15 | 45.3 | 80.0 | 46.1 | 26.3 | 56.2 | 58.9 |
0.20 | 46.1 | 80.1 | 47.9 | 27.3 | 56.3 | 59.1 |
0.25 | 46.6 | 81.0 | 47.6 | 27.3 | 56.9 | 59.6 |
0.30 | 45.6 | 80.2 | 47.5 | 26.8 | 55.6 | 58.7 |
Table 2 The ablation experimental result of the spatial box coefficient (%)
α | AP50-95 | AP50 | AP75 | AR1 | AR10 | AR100 |
---|---|---|---|---|---|---|
0.10 | 45.4 | 80.1 | 45.7 | 26.5 | 56.0 | 59.1 |
0.15 | 45.3 | 80.0 | 46.1 | 26.3 | 56.2 | 58.9 |
0.20 | 46.1 | 80.1 | 47.9 | 27.3 | 56.3 | 59.1 |
0.25 | 46.6 | 81.0 | 47.6 | 27.3 | 56.9 | 59.6 |
0.30 | 45.6 | 80.2 | 47.5 | 26.8 | 55.6 | 58.7 |
方法 | AP50-95 | AP50 | AP75 | APS | APM | APL | AR1 | AR10 | AR100 | ARS | ARM | ARL | Time (s/im) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSD | 33.5 | 65.8 | 30.4 | 13.9 | 14.0 | 37.5 | 22.4 | 41.5 | 42.6 | 20.6 | 22.1 | 46.8 | 0.008 |
RetinaNet | 35.5 | 66.7 | 33.6 | 9.1 | 25.7 | 38.6 | 22.5 | 46.8 | 48.1 | 15.4 | 32.4 | 51.8 | 0.050 |
YOLOF | 43.5 | 77.1 | 43.4 | 14.1 | 27.1 | 47.6 | 26.5 | 51.1 | 51.7 | 14.0 | 34.0 | 56.4 | 0.033 |
Dynamic R-CNN | 43.7 | 75.1 | 45.4 | 19.6 | 34.0 | 46.8 | 26.4 | 51.8 | 52.2 | 19.6 | 39.2 | 55.9 | 0.041 |
Libra R-CNN | 45.3 | 80.1 | 45.7 | 14.1 | 32.3 | 48.3 | 27.6 | 53.9 | 54.9 | 17.1 | 39.0 | 58.4 | 0.042 |
基线模型 | 42.1 | 77.5 | 41.9 | 14.9 | 32.9 | 45.0 | 25.7 | 50.1 | 50.9 | 15.1 | 39.4 | 54.0 | 0.069 |
本文模型 | 46.6 | 81.0 | 47.6 | 24.1 | 37.1 | 49.7 | 27.3 | 56.9 | 59.6 | 24.4 | 46.8 | 63.1 | 0.190 |
Table 3 The comparison of detection model performances (%)
方法 | AP50-95 | AP50 | AP75 | APS | APM | APL | AR1 | AR10 | AR100 | ARS | ARM | ARL | Time (s/im) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSD | 33.5 | 65.8 | 30.4 | 13.9 | 14.0 | 37.5 | 22.4 | 41.5 | 42.6 | 20.6 | 22.1 | 46.8 | 0.008 |
RetinaNet | 35.5 | 66.7 | 33.6 | 9.1 | 25.7 | 38.6 | 22.5 | 46.8 | 48.1 | 15.4 | 32.4 | 51.8 | 0.050 |
YOLOF | 43.5 | 77.1 | 43.4 | 14.1 | 27.1 | 47.6 | 26.5 | 51.1 | 51.7 | 14.0 | 34.0 | 56.4 | 0.033 |
Dynamic R-CNN | 43.7 | 75.1 | 45.4 | 19.6 | 34.0 | 46.8 | 26.4 | 51.8 | 52.2 | 19.6 | 39.2 | 55.9 | 0.041 |
Libra R-CNN | 45.3 | 80.1 | 45.7 | 14.1 | 32.3 | 48.3 | 27.6 | 53.9 | 54.9 | 17.1 | 39.0 | 58.4 | 0.042 |
基线模型 | 42.1 | 77.5 | 41.9 | 14.9 | 32.9 | 45.0 | 25.7 | 50.1 | 50.9 | 15.1 | 39.4 | 54.0 | 0.069 |
本文模型 | 46.6 | 81.0 | 47.6 | 24.1 | 37.1 | 49.7 | 27.3 | 56.9 | 59.6 | 24.4 | 46.8 | 63.1 | 0.190 |
Fig. 7 The comparison of detection accuracy for each type fitting ((a) The comparison of AP50 index for each type fitting; (b) The comparison of AP75 index for each type fitting)
Fig. 8 The comparison of detection result visualization ((a)~(c) The visualization of the baseline model detection results; (d)~(f) The visualization of the proposed model detection results)
[1] | 李德海, 李丹丹. 基于视觉的输电线路自动监测技术综述[J]. 黑龙江电力, 2019, 41(6): 559-564. |
LI D H, LI D D. Overview of vision-based transmission line automatic monitoring technology[J]. Heilongjiang Electric Power, 2019, 41(6): 559-564. (in Chinese) | |
[2] | 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. |
ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560. (in Chinese) | |
[3] |
NGUYEN V N, JENSSEN R, ROVERSO D. Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 107-120.
DOI URL |
[4] | 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进[J/OL]. 中国电机工程学报. [2022-12-06]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220831.1053.002.html. |
LIU C Y, WU Y Q. Research progress on visual detection methods for transmission lines based on deep learning[J/OL]. Proceedings of the CSEE. [2022-12-06]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220831.1053.002.html. (in Chinese) | |
[5] | 黄郑, 王红星, 翟学锋, 等. 输电线路无人机自主巡检方法研究与应用[J]. 计算技术与自动化, 2021, 40(3): 157-161. |
HUANG Z, WANG H X, ZHAI X F, et al. Research and application of UAV autonomous inspection method for transmission line[J]. Computing Technology and Automation, 2021, 40(3): 157-161. (in Chinese) | |
[6] | 金立军, 胡娟, 闫书佳. 基于图像的高压输电线间隔棒故障诊断方法[J]. 高电压技术, 2013, 39(5): 1040-1045. |
JIN L J, HU J, YAN S J. Method of spacer fault diagnose on transmission line based on image procession[J]. High Voltage Engineering, 2013, 39(5): 1040-1045. (in Chinese) | |
[7] | 万林, 巫世晶, 谢福起, 等. 基于图像处理的输电线路耐张线夹监测系统[J]. 武汉大学学报: 工学版, 2020, 53(12): 1106-1111. |
WAN L, WU S J, XIE F Q, et al. Monitoring system of transmission line strain clamps based on image processing[J]. Engineering Journal of Wuhan University, 2020, 53(12): 1106-1111. (in Chinese) | |
[8] | 王胜, 陈文, 匡小兵, 等. 一种基于多特征显著性融合的绝缘子区域检测与定位算法[J]. 计算机应用研究, 2020, 37(S2): 351-353. |
WANG S, CHEN W, KUANG X B, et al. Insulator area detection and localization algorithm based on multi-feature salient fusion[J]. Application Research of Computers, 2020, 37(S2): 351-353. (in Chinese) | |
[9] | 戚银城, 江爱雪, 赵振兵, 等. 基于改进SSD模型的输电线路巡检图像金具检测方法[J]. 电测与仪表, 2019, 56(22): 7-12, 43. |
QI Y C, JIANG A X, ZHAO Z B, et al. Fittings detection method in patrol images of transmission line based on improved SSD[J]. Electrical Measurement & Instrumentation, 2019, 56(22): 7-12, 43. (in Chinese) | |
[10] | 张永翔, 吴功平, 刘中云, 等. 基于YOLOv3网络的输电线路防震锤和线夹检测迁移学习[J]. 计算机应用, 2020, 40(S2): 188-194. |
ZHANG Y X, WU G P, LIU Z Y, et al. Transfer learning of transmission line damper and clamp detection based on YOLOv3 network[J]. Journal of Computer Applications, 2020, 40(S2): 188-194. (in Chinese) | |
[11] | 李鑫, 刘帅男, 杨桢, 等. 基于改进Cascade R-CNN的输电线路多目标检测[J]. 电子测量与仪器学报, 2021, 35(10): 24-32. |
LI X, LIU S N, YANG Z, et al. Multi-target detection of transmission lines based on improved cascade R-CNN[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 24-32. (in Chinese) | |
[12] |
易继禹, 陈慈发, 龚国强. 基于改进Faster RCNN的输电线路航拍绝缘子检测[J]. 计算机工程, 2021, 47(6): 292-298, 304.
DOI |
YI J Y, CHEN C F, GONG G Q. Aerial insulator detection of transmission line based on improved faster RCNN[J]. Computer Engineering, 2021, 47(6): 292-298, 304. (in Chinese)
DOI |
|
[13] | WU Y, CHEN Y P, YUAN L, et al. Rethinking classification and localization for object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10186-10195. |
[14] | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS--improving object detection with one line of code[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 5561-5569. |
[15] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[16] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[17] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2117-2125. |
[18] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2961-2969. |
[19] | CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. [2023-8-16]. https://arxiv.org/abs/1406.1078. |
[20] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// 2016 European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[21] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[22] | CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13039-13048. |
[23] | ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]// 2020 European Conference on Computer Vision. Cham: Springer, 2020: 260-275. |
[24] | PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 821-830. |
[1] |
ZHOU Rui-chuang, TIAN Jin, YAN Feng-ting, ZHU Tian-xiao, ZHANG Yu-jin.
Point cloud classification model incorporating external attention and graph convolution
[J]. Journal of Graphics, 2023, 44(6): 1162-1172.
|
[2] |
WANG Ji, WANG Sen, JIANG Zhi-wen, XIE Zhi-feng, LI Meng-tian.
Zero-shot text-driven avatar generation based on depth-conditioned diffusion model
[J]. Journal of Graphics, 2023, 44(6): 1218-1226.
|
[3] | YAN Guang-wei, LIU Run-ze, JIAO Run-hai, HE Hui. Detection method of dropped anti-vibration hammer for transmission line based on improved Cascade RCNN [J]. Journal of Graphics, 2023, 44(5): 849-860. |
[4] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[5] | DANG Hong-she, XU Huai-biao, ZHANG Xuan-de. Deep learning stereo matching algorithm fusing structural information [J]. Journal of Graphics, 2023, 44(5): 899-906. |
[6] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. |
[7] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[8] | HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5 [J]. Journal of Graphics, 2023, 44(4): 667-676. |
[9] | CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX [J]. Journal of Graphics, 2023, 44(4): 677-690. |
[10] | SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network [J]. Journal of Graphics, 2023, 44(4): 710-717. |
[11] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[12] | GUO Yin-hong, WANG Li-chun, LI Shuang. Image feature matching based on repeatability and specificity constraints [J]. Journal of Graphics, 2023, 44(4): 739-746. |
[13] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[14] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[15] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||