Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1080-1090.DOI: 10.11996/JG.j.2095-302X.2023061080
• Review • Previous Articles Next Articles
DING Man(), LI Peng-hui, ZHANG Yi-fei, MA Hong-kun
Received:
2023-06-07
Accepted:
2023-09-20
Online:
2023-12-31
Published:
2023-12-17
About author:
First author contact:DING Man (1979-), professor, Ph.D. Her main research interests cover product color emotion design, intelligent design, etc.
E-mail:dingman@hebut.edu.cn
Supported by:
CLC Number:
DING Man, LI Peng-hui, ZHANG Yi-fei, MA Hong-kun. Current status and progress of research on the application of complex networks in the field of industrial design[J]. Journal of Graphics, 2023, 44(6): 1080-1090.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023061080
研究内容 | 研究方法 | 特点 | 优势 | 劣势 |
---|---|---|---|---|
节点排序 | 度中心性算法 | 根据节点的度数进行排序 | 计算速度较快,适用于大规模网络 | 只考虑节点的度,忽略了节点的位置和其他局部特征 |
K-shell算法 | 通过逐步删除度数较低的节点,将网络剥离为若干层,按照层级排序 | 考虑节点的局部连接性,能够识别出网络中的核心节点 | 在大规模网络中计算复杂度较高 | |
LeaderRank算法 | 基于节点之间的消息传递计算节点的排序值 | 考虑节点间的相互作用,可较好地捕捉到节点在整个网络中的重要性 | 计算复杂度较高,需要进行多次迭代 | |
关联发现 | Girvan-Newman算法 | 通过不断切割网络中的边识别社团结构,将网络分割为多个连通子图 | 对于具有明显社团结构的网络,能够准确地发现社团之间的关联关系 | 易将网络中的噪声节点划分为社区,对参数的选择较敏感 |
Fast-Newman算法 | 通过估计节点对之间的流量来发现网络中的关联关系 | 能够发现重叠社区结构,对节点的多重归属性有较好的处理能力 | 计算复杂度较高,对网络规模和密度敏感 | |
谱聚类算法 | 通过对网络的拉普拉斯矩阵进行特征值分解,并基于特征向量进行聚类 | 能够发现网络中的潜在结构,并支持非线性分割 | 对于大规模网络计算复杂度较高 |
Table 1 Comparison of complex network structure feature analysis methods
研究内容 | 研究方法 | 特点 | 优势 | 劣势 |
---|---|---|---|---|
节点排序 | 度中心性算法 | 根据节点的度数进行排序 | 计算速度较快,适用于大规模网络 | 只考虑节点的度,忽略了节点的位置和其他局部特征 |
K-shell算法 | 通过逐步删除度数较低的节点,将网络剥离为若干层,按照层级排序 | 考虑节点的局部连接性,能够识别出网络中的核心节点 | 在大规模网络中计算复杂度较高 | |
LeaderRank算法 | 基于节点之间的消息传递计算节点的排序值 | 考虑节点间的相互作用,可较好地捕捉到节点在整个网络中的重要性 | 计算复杂度较高,需要进行多次迭代 | |
关联发现 | Girvan-Newman算法 | 通过不断切割网络中的边识别社团结构,将网络分割为多个连通子图 | 对于具有明显社团结构的网络,能够准确地发现社团之间的关联关系 | 易将网络中的噪声节点划分为社区,对参数的选择较敏感 |
Fast-Newman算法 | 通过估计节点对之间的流量来发现网络中的关联关系 | 能够发现重叠社区结构,对节点的多重归属性有较好的处理能力 | 计算复杂度较高,对网络规模和密度敏感 | |
谱聚类算法 | 通过对网络的拉普拉斯矩阵进行特征值分解,并基于特征向量进行聚类 | 能够发现网络中的潜在结构,并支持非线性分割 | 对于大规模网络计算复杂度较高 |
研究方法 | 特点 | 优势 | 劣势 |
---|---|---|---|
马尔可夫 算法 | 基于状态转移概率的随机模型,可描述复杂网络中节点之间的转换行为 | 计算简单快速,可以较好地适应大规模网络 | 忽略节点之间的相互作用,在描述复杂的网络行为时存在局限性 |
蒙特卡罗模拟方法 | 基于随机采样的数值模拟方法,通过模拟大量随机事件近似计算复杂网络的行为特性 | 可灵活地模拟各种复杂网络结构和行为,并且可以较好地处理非线性关系 | 需要进行大量的随机采样和计算,对于大规模网络存在较大的计算资源需求 |
演化博弈 理论 | 基于博弈论的分析方法,通过研究节点之间的策略选择和演化过程揭示复杂网络中节点行为的动态演化规律 | 能够较好地描述节点之间的竞争、合作和适应性变化等行为,可以对复杂网络的稳定性和动态行为进行深入分析 | 在描述复杂网络时需要做一些假设和简化,可能无法覆盖所有的行为模式,并在计算上存在一定的困难 |
Table 2 Comparison of methods for dynamic behavior analysis of complex networks
研究方法 | 特点 | 优势 | 劣势 |
---|---|---|---|
马尔可夫 算法 | 基于状态转移概率的随机模型,可描述复杂网络中节点之间的转换行为 | 计算简单快速,可以较好地适应大规模网络 | 忽略节点之间的相互作用,在描述复杂的网络行为时存在局限性 |
蒙特卡罗模拟方法 | 基于随机采样的数值模拟方法,通过模拟大量随机事件近似计算复杂网络的行为特性 | 可灵活地模拟各种复杂网络结构和行为,并且可以较好地处理非线性关系 | 需要进行大量的随机采样和计算,对于大规模网络存在较大的计算资源需求 |
演化博弈 理论 | 基于博弈论的分析方法,通过研究节点之间的策略选择和演化过程揭示复杂网络中节点行为的动态演化规律 | 能够较好地描述节点之间的竞争、合作和适应性变化等行为,可以对复杂网络的稳定性和动态行为进行深入分析 | 在描述复杂网络时需要做一些假设和简化,可能无法覆盖所有的行为模式,并在计算上存在一定的困难 |
[1] | 罗仕鉴. 群智创新: 人工智能2.0时代的新兴创新范式[J]. 包装工程, 2020, 41(6): 50-56, 66. |
LUO S J. Crowd intelligence innovation: a new innovation paradigm in the AI 2.0 era[J]. Packaging Engineering, 2020, 41(6): 50-56, 66 (in Chinese). | |
[2] | 朱毅. 造型设计的复杂性问题与设计计算[D]. 长沙: 湖南大学, 2015. |
ZHU Y. A study on design complexity and design computing[D]. Changsha: Hunan University, 2015 (in Chinese). | |
[3] | 周华任, 马亚平, 马元正, 等. 网络科学发展综述[J]. 计算机工程与应用, 2009, 45(24): 7-10. |
ZHOU H R, MA Y P, MA Y Z, et al. Overview of development of network science[J]. Computer Engineering and Applications, 2009, 45(24): 7-10 (in Chinese). | |
[4] | 张其历, 郝泳涛. 产品复杂关系网络建模及其动力演化研究[J]. 电脑知识与技术, 2012, 8(13): 3055-3057. |
ZHANG Q L, HAO Y T. Research of network modeling of complex product and dynamic evolution[J]. Computer Knowledge and Technology, 2012, 8(13): 3055-3057 (in Chinese). | |
[5] | 王沛, 吕金虎. 基因调控网络的控制: 机遇与挑战[J]. 自动化学报, 2013, 39(12): 1969-1979. |
WANG P, LV J H. Control of genetic regulatory networks: opportunities and challenges[J]. Acta Automatica Sinica, 2013, 39(12): 1969-1979 (in Chinese).
DOI URL |
|
[6] | 曹一家, 张宇栋, 包哲静. 电力系统和通信网络交互影响下的连锁故障分析[J]. 电力自动化设备, 2013, 33(1): 7-11. |
CAO Y J, ZHANG Y D, BAO Z J. Analysis of cascading failures under interactions between power grid and communication network[J]. Electric Power Automation Equipment, 2013, 33(1): 7-11 (in Chinese). | |
[7] | 刘张, 李坚, 王超, 等. 基于复杂城市道路网络的交通拥堵预测模型[J]. 电子科技大学学报, 2016, 45(1): 17-25. |
LIU Z, LI J, WANG C, et al. A prediction model for traffic congestion in complex urban road networks[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(1): 17-25 (in Chinese). | |
[8] |
黄黎, 谭文安. 支持复杂社会网络演化的过程挖掘技术综述[J]. 计算机工程与应用, 2017, 53(16): 18-28, 49.
DOI |
HUANG L, TAN W A. Survey on process mining in complex evolving social networks[J]. Computer Engineering and Applications, 2017, 53(16): 18-28, 49 (in Chinese).
DOI |
|
[9] | 周涛, 张子柯, 陈关荣, 等. 复杂网络研究的机遇与挑战[J]. 电子科技大学学报, 2014, 43(1): 1-5. |
ZHOU T, ZHANG Z K, CHEN G R, et al. The opportunities and challenges of complex networks research[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(1): 1-5 (in Chinese). | |
[10] |
ZHANG Z F, XU D R, OSTROSI E, et al. Optimization of the product-service system configuration based on a multilayer network[J]. Sustainability, 2020, 12(2): 746.
DOI URL |
[11] | 郑冬英. 复杂任务环境下的人机交互信息网络拓扑结构研究[D]. 南京: 东南大学, 2019. |
ZHENG D Y. Research on topological structure of human-computer interactive information network in complex task environment[D]. Nanjing: Southeast University, 2019 (in Chinese). | |
[12] | 杨延璞, 龚政, 兰晨昕, 等. 工业设计决策网络构建及其动态演化仿真[J]. 浙江大学学报: 工学版, 2021, 55(12): 2298-2306. |
YANG Y P, GONG Z, LAN C X, et al. Construction of industrial design decision-making network and its dynamic evolution simulation[J]. Journal of Zhejiang University: Engineering Science, 2021, 55(12): 2298-2306 (in Chinese). | |
[13] |
CHEN L, ZHENG Y, XI J T, et al. An analysis method for change propagation based on product feature network[J]. Research in Engineering Design, 2020, 31(4): 491-503.
DOI |
[14] | YANG W M, LI C D, YU Y Y, et al. Research on importance evaluation of complex product parts based on multilayer complex network[J]. Discrete Dynamics in Nature and Society, 2021, 2021: 1-19. |
[15] | 詹敏, 王铮, 赵燕伟, 等. 基于产品参数基元网络的变更传播路径优化[J]. 计算机集成制造系统, 2022, 28(8): 2545-2556. |
ZHAN M, WANG Z, ZHAO Y W, et al. Optimization of change propagation path based on product parameter basic-element network[J]. Computer Integrated Manufacturing Systems, 2022, 28(8): 2545-2556 (in Chinese). | |
[16] | 张方风, 刘军. 复杂网络拓扑结构与演化模型研究综述(一)[J]. 系统科学学报, 2014, 22(2): 55-57. |
ZHANG F F, LIU J. Reviews of complex networks topology structure and evolution models research (Ⅰ)[J]. Chinese Journal of Systems Science, 2014, 22(2): 55-57 (in Chinese). | |
[17] | 张方风, 刘军. 复杂网络拓扑结构与演化模型研究综述(二)[J]. 系统科学学报, 2015, 23(1): 52-55. |
ZHANG F F, LIU J. Reviews of complex networks topology structure and evolution models research (Ⅱ)[J]. Chinese Journal of Systems Science, 2015, 23(1): 52-55 (in Chinese). | |
[18] | YU G D, YANG Y, ZHANG X F, et al. Network-based analysis of requirement change in customized complex product development[J]. International Journal of Information Technology & Decision Making, 2017, 16(4): 1125-1149. |
[19] | 陈亮, 郑宇, 李少阳. 基于产品特征网络的变更传播评价方法[J]. 计算机集成制造系统, 2019, 25(11): 2905-2912. |
CHEN L, ZHENG Y, LI S Y. Evaluation approach for change propagation based on product feature network[J]. Computer Integrated Manufacturing Systems, 2019, 25(11): 2905-2912 (in Chinese). | |
[20] |
LOUREIRO G B, FERREIRA J C E, MESSERSCHMIDT P H Z. Design structure network (DSN): a method to make explicit the product design specification process for mass customization[J]. Research in Engineering Design, 2020, 31(2): 197-220.
DOI |
[21] | 杨延璞, 兰晨昕, 雷紫荆, 等. 产品造型设计多阶段网络耦合决策方法研究[J]. 图学学报, 2021, 42(6): 1018-1026. |
YANG Y P, LAN C X, LEI Z J, et al. Research on multi-stage network coupling decision-making method of product styling design[J]. Journal of Graphics, 2021, 42(6): 1018-1026 (in Chinese). | |
[22] |
COLLINS J J, CHOW C C. It's a small world[J]. Nature, 1998, 393(6684): 409-410.
DOI |
[23] |
WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world' networks[J]. Nature, 1998, 393(6684): 440-442.
DOI |
[24] |
NEWMAN M E J, WATTS D J. Renormalization group analysis of the small-world network model[J]. Physics Letters A, 1999, 263(4-6): 341-346.
DOI URL |
[25] |
BARRAT A, WEIGT M. On the properties of small-world network models[J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 13(3): 547-560.
DOI URL |
[26] |
BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
DOI PMID |
[27] | 李佳旭, 蔡梦思, 谭索怡. 基于引文大数据的高阶网络建模及信息增益比较研究[J]. 系统科学与数学, 2021, 41(10): 2763-2775. |
LI J X, CAI M S, TAN S Y, et al. A comparison study of higher-order network modeling and information gain based on big citation data[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(10): 2763-2775 (in Chinese).
DOI |
|
[28] |
MUCHA P J, RICHARDSON T, MACON K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878.
DOI PMID |
[29] |
GÓMEZ-GARDEÑES J, REINARES I, ARENAS A, et al. Evolution of cooperation in multiplex networks[J]. Scientific Reports, 2012, 2: 620.
DOI |
[30] | 吴宗柠, 狄增如, 樊瑛. 多层网络的结构与功能研究进展[J]. 电子科技大学学报, 2021, 50(1): 106-120. |
WU Z N, DI Z R, FAN Y. The structure and function of multilayer networks: progress and prospects[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(1): 106-120 (in Chinese). | |
[31] |
SCHOLTES I, WIDER N, PFITZNER R, et al. Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks[J]. Nature Communications, 2014, 5: 5024.
DOI PMID |
[32] |
BENSON A R, GLEICH D F, LESKOVEC J. Higher-order organization of complex networks[J]. Science, 2016, 353(6295): 163-166.
DOI PMID |
[33] |
IACOPINI I, PETRI G, BARRAT A, et al. Simplicial models of social contagion[J]. Nature Communications, 2019, 10: 2485.
DOI PMID |
[34] |
MATAMALAS J T, GÓMEZ S, ARENAS A. Abrupt phase transition of epidemic spreading in simplicial complexes[J]. Physical Review Research, 2020, 2: 012049.
DOI URL |
[35] |
WANG H A, MA C A, CHEN H S, et al. Effect of overlap on spreading dynamics on multiplex networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020(4): 043402.
DOI URL |
[36] |
TUDISCO F, ARRIGO F, GAUTIER A. Node and layer eigenvector centralities for multiplex networks[J]. SIAM Journal on Applied Mathematics, 2018, 78(2): 853-876.
DOI URL |
[37] |
ZHANG H, FISZMAN M, SHIN D, et al. Degree centrality for semantic abstraction summarization of therapeutic studies[J]. Journal of Biomedical Informatics, 2011, 44(5): 830-838.
DOI PMID |
[38] |
KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893.
DOI |
[39] |
LÜ L Y, ZHANG Y C, YEUNG C H, et al. Leaders in social networks, the Delicious case[J]. PLOS ONE, 2011, 6(6): e21202.
DOI URL |
[40] |
GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826.
DOI PMID |
[41] | NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(<W>6 Pt 2): 066133. |
[42] |
LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.
DOI URL |
[43] |
WU C W, CHUA L O. Synchronization in an array of linearly coupled dynamical systems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995, 42(8): 430-447.
DOI URL |
[44] |
GROSS T, BLASIUS B. Adaptive coevolutionary networks: a review[J]. Journal of the Royal Society, Interface, 2008, 5(20): 259-271.
DOI PMID |
[45] |
GROSS T, DOMMAR D'LIMA C J, BLASIUS B. Epidemic dynamics on an adaptive network[J]. Physical Review Letters, 2006, 96(20): 208701.
DOI URL |
[46] | 王亚楠. 基于控制策略的复杂时滞网络的同步性研究[D]. 秦皇岛: 燕山大学, 2018. |
WANG Y N. Research on synchronization of complex delayed networks system based on control methods[D]. Qinhuangdao: Yanshan University, 2018 (in Chinese). | |
[47] | 丁益民, 樊京芳, 叶方富, 等. 随机派系网络的渗流相变研究[J]. 中国科学: 物理学力学天文学, 2016, 46(6): 39-46. |
DING Y M, FAN J F, YE F F, et al. Percolation of random clique networks[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2016, 46(6): 39-46 (in Chinese). | |
[48] | 魏夕凯, 马本. 农村生活垃圾分类治理的奖惩激励机制: 基于复杂网络演化博弈模型[J]. 中国环境科学, 2022, 42(8): 3822-3831. |
WEI X K, MA B. Reward and punishment incentive mechanism of domestic waste classification in rural China: based on complex network evolutionary game model[J]. China Environmental Science, 2022, 42(8): 3822-3831 (in Chinese). | |
[49] |
STEWARD D V. The design structure system: a method for managing the design of complex systems[J]. IEEE Transactions on Engineering Management, 1981, EM-28(3): 71-74.
DOI URL |
[50] | 刘夫云, 杨青海, 祁国宁, 等. 基于复杂网络的产品族零部件通用性分析方法[J]. 机械工程学报, 2005, 41(11): 75-79. |
LIU F Y, YANG Q H, QI G N, et al. Universality analysis method of parts for product family based on complex network[J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 75-79 (in Chinese). | |
[51] | 陈孟江. 面向产品设计的参数网络建模技术及其应用研究[D]. 杭州: 浙江大学, 2010. |
CHEN M J. Parameter network modeling technology and its application research for product design[D]. Hangzhou: Zhejiang University, 2010 (in Chinese). | |
[52] | 闫栋. 分布式模块化产品系统的演化动力学[D]. 杭州: 浙江大学, 2006. |
YAN D. The evolving dynamics of distributed modeled product systems[D]. Hangzhou: Zhejiang University, 2006 (in Chinese). | |
[53] | 刘曦泽, 祁国宁, 纪杨建, 等. 基于复杂网络与公理设计的产品平台设计方法[J]. 机械工程学报, 2012, 48(11): 86-93. |
LIU X Z, QI G N, JI Y J, et al. Product platform design method based on complex network and axiomatic design[J]. Journal of Mechanical Engineering, 2012, 48(11): 86-93 (in Chinese). | |
[54] | 杨格兰. 基于复杂网络理论的产品结构模块划分方法[J]. 图学学报, 2012, 33(6): 69-75. |
YANG G L. Module partition method based on complex network theory[J]. Journal of Graphics, 2012, 33(6): 69-75 (in Chinese). | |
[55] |
SOSA M E, EPPINGER S D, ROWLES C M. A network approach to define modularity of components in complex products[J]. Journal of Mechanical Design, 2007, 129(11): 1118-1129.
DOI URL |
[56] |
LI Y P, WANG Z T, ZHANG L, et al. Function module partition for complex products and systems based on weighted and directed complex networks[J]. Journal of Mechanical Design, 2017, 139(2): 021101.
DOI URL |
[57] | 樊蓓蓓, 祁国宁. 基于复杂网络的产品族结构建模及模块分析方法[J]. 机械工程学报, 2007, 43(3): 187-192, 198. |
FAN B B, QI G N. Modeling of product family stricture and module analysis method based on complex network[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 187-192, 198 (in Chinese). | |
[58] | 樊蓓蓓, 祁国宁, 纪杨建. 基于复杂网络的产品族模块化过程[J]. 农业机械学报, 2009, 40(7): 187-191. |
FAN B B, QI G N, JI Y J. Generation process of product family modularization based on complex network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(7): 187-191 (in Chinese). | |
[59] | 樊蓓蓓, 纪杨建, 祁国宁, 等. 产品族零部件关系网络实证分析及演化[J]. 浙江大学学报: 工学版, 2009, 43(2): 213-219. |
FAN B B, JI Y J, QI G N, et al. Demonstration analysis and evolution of parts relationship network for product family[J]. Journal of Zhejiang University: Engineering Science, 2009, 43(2): 213-219 (in Chinese). | |
[60] | 宋利伟, 纪杨建, 祁国宁, 等. 面向复杂模块化产品族演化控制的评价方法[J]. 计算机集成制造系统, 2012, 18(10): 2131-2137. |
SONG L W, JI Y J, QI G N, et al. Evaluation method for evolution control of complex modular product family[J]. Computer Integrated Manufacturing Systems, 2012, 18(10): 2131-2137 (in Chinese). | |
[61] | 邓小林. 基于参数化技术的产品变型设计方法及其关键技术研究[D]. 桂林: 桂林电子科技大学, 2009. |
DENG X L. Research on product variant design method and key technique problems based on parametric technology[D]. Guilin: Guilin University of Electronic Technology, 2009 (in Chinese). | |
[62] | 刘肖健, 孙艳, 吴剑锋, 等. 产品基因调控网络模型及其对设计过程的辅助[J]. 计算机集成制造系统, 2013, 19(7): 1463-1471. |
LIU X J, SUN Y, WU J F, et al. Product's gene regulatory network model and its aiding to design process[J]. Computer Integrated Manufacturing Systems, 2013, 19(7): 1463-1471 (in Chinese). | |
[63] | 张露芳, 盛振, 孙伦, 等. 基于基因网络的产品形态设计研究[J]. 浙江工业大学学报, 2016, 44(5): 584-590. |
ZHANG L F, SHENG Z, SUN L, et al. Study of the product form design based on gene network[J]. Journal of Zhejiang University of Technology, 2016, 44(5): 584-590 (in Chinese). | |
[64] | 苏建宁, 白睿昇, 李雄, 等. 基于约束网络的产品进化设计[J]. 兰州理工大学学报, 2021, 47(4): 59-65. |
SU J N, BAI R S, LI X, et al. Research on product evolutionary design based on constraint network[J]. Journal of Lanzhou University of Technology, 2021, 47(4): 59-65 (in Chinese). | |
[65] | 姜鑫玉, 刘镇铭, 周丰, 等. 基于形态审美的产品基因网络造型研究[J]. 包装工程, 2022, 43(20): 92-101. |
JIANG X Y, LIU Z M, ZHOU F, et al. Product gene network modeling based on form aesthetics[J]. Packaging Engineering, 2022, 43(20): 92-101 (in Chinese). | |
[66] | 李愚, 卢纯福, 刘肖健, 等. 汽车外形设计的基因网络模型[J]. 计算机集成制造系统, 2018, 24(5): 1249-1260. |
LI Y, LU C F, LIU X J, et al. Gene network model of automobile styling design[J]. Computer Integrated Manufacturing Systems, 2018, 24(5): 1249-1260 (in Chinese). | |
[67] | 李雪瑞, 余隋怀, 初建杰, 等. 意象驱动的产品形态基因网络模型构建与应用[J]. 计算机集成制造系统, 2018, 24(2): 464-473. |
LI X R, YU S H, CHU J J, et al. Construction and application of product form gene network model driven by Kansei[J]. Computer Integrated Manufacturing Systems, 2018, 24(2): 464-473 (in Chinese). | |
[68] | 张文召. 基于产品基因网络的物流装备造型设计研究与应用[D]. 贵阳: 贵州大学, 2019. |
ZHANG W Z. Research and application of logistics equipment modeling design based on product gene network[D]. Guiyang: Guizhou University, 2019 (in Chinese). | |
[69] | 刘华, 卫文韬, 李泽珩. 面向多目标意象设计的产品基因调控网络构建方法[J]. 机械设计, 2022, 39(7): 129-134. |
LIU H, WEI W T, LI Z H. Construction method of product gene regulatory network for multi-objective image design[J]. Journal of Machine Design, 2022, 39(7): 129-134 (in Chinese). | |
[70] | 马洪坤. 意象驱动的汽车侧面形态基因网络研究与应用[D]. 天津: 河北工业大学, 2022. |
MA H K. Image-driven genetic network research and application of automotive side morphology[D]. Tianjin: Hebei University of Technology, 2022 (in Chinese). | |
[71] |
FAN J S, YU S H, YU M J, et al. Research on construction and application of gene network model for form design based on consumer's preference[J]. Advanced Engineering Informatics, 2021, 50: 101412.
DOI URL |
[72] | 刘肖健, 曹愉静, 赵露唏. 传统纹样的色彩网络模型及配色设计辅助技术[J]. 计算机集成制造系统, 2016, 22(4): 899-907. |
LIU X J, CAO Y J, ZHAO L X. Color networks of traditional cultural patterns and color design aiding technology[J]. Computer Integrated Manufacturing Systems, 2016, 22(4): 899-907 (in Chinese). | |
[73] | 李愚, 刘肖健, 孙艳, 等. 产品配色设计的色彩邻接网络模型[J]. 计算机集成制造系统, 2019, 25(9): 2355-2364. |
LI Y, LIU X J, SUN Y, et al. Color adjacent network model for product color design[J]. Computer Integrated Manufacturing Systems, 2019, 25(9): 2355-2364 (in Chinese). | |
[74] | XU B Q, LIU X J, LU C F, et al. Transferring the color imagery from an image: a color network model for assisting color combination[J]. Color Research & Application, 2019, 44(2): 205-220. |
[75] | 杨梅, 李劲松, 王怡妍. 敦煌传统壁画色彩网络模型构建与应用设计[J]. 包装工程, 2020, 41(18): 222-228. |
YANG M, LI J S, WANG Y Y. Construction and application of color network model of Dunhuang traditional fresco[J]. Packaging Engineering, 2020, 41(18): 222-228 (in Chinese). | |
[76] | 程语. 基于复杂性科学的产品色彩情感化设计研究[D]. 天津: 河北工业大学, 2021. |
CHENG Y. Product color affective design based on complexity science[D]. Tianjin: Hebei University of Technology, 2021 (in Chinese). | |
[77] | 冉亚鑫, 侯文军, 盛卿, 等. 基于联觉实验与色彩网络的传统香薰包装设计研究[J]. 包装工程, 2023, 44(2): 232-241. |
RAN Y X, HOU W J, SHENG Q, et al. Traditional fragrance packaging design based on synesthesia experiment and color network[J]. Packaging Engineering, 2023, 44(2): 232-241 (in Chinese). | |
[78] | 徐博群, 朱昱宁, 刘肖健, 等. 设计师与用户对产品意象的基因网络对比[J]. 包装工程, 2020, 41(8): 98-105. |
XU B Q, ZHU Y N, LIU X J, et al. Comparison of product image gene network between designers and users[J]. Packaging Engineering, 2020, 41(8): 98-105 (in Chinese). | |
[79] |
耿秀丽, 薄振一. 基于网络博弈的顾客需求权重确定方法[J]. 计算机集成制造系统, 2020, 26(10): 2792-2798.
DOI |
GENG X L, BO Z Y. Approach to determine customer requirements weight based on network game[J]. Computer Integrated Manufacturing Systems, 2020, 26(10): 2792-2798 (in Chinese). | |
[80] | 张梦婷. 基于用户隐性知识的产品演化度评估[D]. 徐州: 中国矿业大学, 2022. |
ZHANG M T. Assessment of product evolution degree based on the users' tacit knowledge[D]. Xuzhou: China University of Mining and Technology, 2022 (in Chinese). | |
[81] |
王阳, 裘乐淼, 刘晓健, 等. 基于关联约束网络的定制产品隐式需求激活技术[J]. 计算机集成制造系统, 2020, 26(7): 1855-1867.
DOI |
WANG Y, QIU L M, LIU X J, et al. Implicit requirement activation for customized products based on association constraint network[J]. Computer Integrated Manufacturing Systems, 2020, 26(7): 1855-1867 (in Chinese). | |
[82] | 刘高, 黄沈权, 龙安, 等. 基于超图网络的产品设计知识智能推荐方法研究[J]. 计算机应用研究, 2022, 39(10): 2962-2967. |
LIU G, HUANG S Q, LONG A, et al. Research on intelligent recommendation method of product design knowledge based on hypergraph network[J]. Application Research of Computers, 2022, 39(10): 2962-2967 (in Chinese). | |
[83] | 方聪聪. 基于移动终端的设计师在线电子简历展示系统研究[D]. 杭州: 浙江工业大学, 2018. |
FANG C C. Research on designer online resume display system based on mobile terminal[D]. Hangzhou: Zhejiang University of Technology, 2018 (in Chinese). | |
[84] | QIU K, SU J N, ZHANG S T, et al. Research on product target image cognition based on complex network theory and game theory[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022, 16(6): JAMDSM0064. |
[85] | 徐瑶. 基于基因调控网络的产品优化设计[D]. 杭州: 浙江工业大学, 2014. |
XU Y. The optimized design based on gene regulatory network[D]. Hangzhou: Zhejiang University of Technology, 2014 (in Chinese). | |
[86] | 杨琨, 李彦, 熊艳, 等. 基于复杂网络的知识驱动产品创新设计[J]. 计算机集成制造系统, 2015, 21(9): 2257-2269. |
YANG K, LI Y, XIONG Y, et al. Knowledge driven product innovation design based on complex network[J]. Computer Integrated Manufacturing Systems, 2015, 21(9): 2257-2269 (in Chinese). | |
[87] | 林文广, 赖荣燊, 肖人彬. 基于复杂网络的专利数据驱动的产品创新设计[J]. 中国机械工程, 2020, 31(7): 842-852. |
LIN W G, LAI R S, XIAO R B. Patent data-driven product innovative design based on complex network[J]. China Mechanical Engineering, 2020, 31(7): 842-852 (in Chinese). | |
[88] | LI X R, YU S H, CHU J J, et al. Double push strategy of knowledge for product design based on complex network theory[J]. Discrete Dynamics in Nature and Society, 2017, 2017: 1-15. |
[89] | 李斐, 杨育, 谢建中, 等. 客户协同创新网络的复杂网络特性分析[J]. 重庆大学学报, 2013, 36(7): 27-31. |
LI F, YANG Y, XIE J Z, et al. Characteristic analysis of complex network for customer collaborative innovation network[J]. Journal of Chongqing University, 2013, 36(7): 27-31 (in Chinese). | |
[90] |
YASSINE A, BRAHA D. Complex concurrent engineering and the design structure matrix method[J]. Concurrent Engineering, 2003, 11(3): 165-176.
DOI URL |
[91] |
BRAHA D, BAR-YAM Y. Information flow structure in large-scale product development organizational networks[J]. Journal of Information Technology, 2004, 19(4): 244-253.
DOI URL |
[92] |
BRAHA D, BAR-YAM Y. Topology of large-scale engineering problem-solving networks[J]. Physical Review E, 2004, 69: 016113.
DOI URL |
[93] |
BRAHA D, BAR-YAM Y. The statistical mechanics of complex product development: empirical and analytical results[J]. Management Science, 2007, 53(7): 1127-1145.
DOI URL |
[94] |
王勇, 王松, 张红英. 基于B/S构架的网络结构可视化系统设计与实现[J]. 计算机工程与应用, 2020, 56(11): 230-237.
DOI |
WANG Y, WANG S, ZHANG H Y. Design and implementation of network structure visualization system based on B/S framework[J]. Computer Engineering and Applications, 2020, 56(11): 230-237 (in Chinese).
DOI |
[1] | WANG Peng-fei, TAO Ti-wei, JIAO Dian, SHEN Yan-ming, ZHOU Dong-sheng, ZHANG Qiang. Exploration on the modeling method of complex dynamic system integrating multi-agent and hypergraph [J]. Journal of Graphics, 2023, 44(3): 599-608. |
[2] | YANG Yan-pu, LEI Zi-jing, LAN Chen-xin, WANG Xin-rui, GONG Zheng. Multistage decision-making method of product industrial design by integrating Bayesian network and prospect theory [J]. Journal of Graphics, 2022, 43(3): 537-547. |
[3] | YANG Yan-pu, LAN Chen-xin, LEI Zi-jing, WANG Xin-rui, GONG Zheng . Research on multi-stage network coupling decision-making method of product styling design [J]. Journal of Graphics, 2021, 42(6): 1018-1026. |
[4] | WANG Zhi-yuan, DAI Zhi-peng. Design evaluation and improvement of Children’s scooter based on FDM and FAHP [J]. Journal of Graphics, 2021, 42(5): 849-855. |
[5] | WANG Jun, SUN Shuai . Design of folding mechanism of camping stroller based on extension innovation method and TRIZ theory [J]. Journal of Graphics, 2021, 42(5): 866-872. |
[6] | LI Xue-rui, HOU Xing-gang, YANG Mei, HE Jia-xing, WANG Yi-yan, GUO Hao-yue, LI Xin-ying, WANG Lu-yao. The optimal decision-making model of industrial design scheme based on multi-level grey comprehensive evaluation method and its application [J]. Journal of Graphics, 2021, 42(4): 670-679. |
[7] | SUN Li, ZHANG Peng, WU Jian-tao, DAI Cheng, JIANG Nan, LU Zhi-bin . Design of wearable rehabilitation manipulator based on FBS extended model [J]. Journal of Graphics, 2021, 42(1): 150-157. |
[8] | LYU Zhong-yi. Exterior design strategies of complex electrical products based on intention cognition [J]. Journal of Graphics, 2020, 41(5): 779-787. |
[9] | LI Wei-li1,XIANG Ze-rui1,2, LI Ran1,2, GOU Rui1,DENG Ming-xi1. Study on the approach to exterior design for metro trains based on extension semantics and fuzzy comprehensive evaluation [J]. Journal of Graphics, 2020, 41(5): 814-823. |
[10] | WANG Mei-xue, ZHAI Hong-lei. Evaluation method and application of rehabilitation training products for autistic children based on AHP and TOPSIS [J]. Journal of Graphics, 2020, 41(3): 453-460. |
[11] | LI Tian-zeng, HUANG Hong-mei, CHEN Jia-jing, LAI Chun-min. A product conceptual design method based on experimental analysis and numerical simulation technology [J]. Journal of Graphics, 2020, 41(1): 132-140. |
[12] | LIU Da-shuai1, YANG Qin2, LV Jian1, WANG Wei-xing2 . Comprehensive Importance of Integrating User Satisfaction with User Demand [J]. Journal of Graphics, 2019, 40(6): 1137-1142. |
[13] | LI Tian-zeng1, HUANG Xin-yi1, HUANG Ling2 . A Product Conceptual Design Method Based on Numerical Simulation Technology [J]. Journal of Graphics, 2019, 40(2): 308-314. |
[14] | LIU Jing1, LIU Yan-cong1,2 . The Construction of Practical Teaching System of Professional Courses of Industrial Design Under the Concept of OBE-CDIO [J]. Journal of Graphics, 2019, 40(2): 416-421. |
[15] | WANG Miao-hui1, LI Yan1, SONG Wu2, HUANG Mei-ying1, CHEN Li1 . Research on Man-Machine Interface Design Based on Scientific Experiment ——A Case Study of the Improved Design of Gree Air Conditioner Interface [J]. Journal of Graphics, 2019, 40(1): 181-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||